积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(30)机器学习(30)

语言

全部英语(20)中文(简体)(10)

格式

全部PDF文档 PDF(30)
 
本次搜索耗时 0.028 秒,为您找到相关结果约 30 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    or momentum are geared towards model convergence. However, they all work in conjunction to produce better models faster. Let's say that we are optimizing the validation loss, , for a given dataset on a important hyperparameters. Important hyperparameters have a larger number of subspaces or subranges than unimportant parameters that need to be searched for an optimal value. For example, in the US presidential benefit from a more aggressive focus (search) on the counties in swing states (important parameters) than those in the rest of the states (unimportant parameters). Figure 7-2: A comparison of hyperparameter
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    advanced compression techniques. By ‘advanced’ we mean that these techniques are slightly more involved than quantization (as discussed in the second chapter). But that doesn’t mean they are harder to learn quantizing is not uniformly distributed, i.e. the data is more likely to take values in a certain range than another equally sized range. It creates equal sized quantization ranges (bins), regardless of the sparsified weight matrix size. As shown in the output below, the sparsified compressed matrix is smaller than the regular compressed matrix by nearly 50%. weights = np.random.normal(size=(100, 100)).astype(np
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    application that employs a high quality model with a reasonable translation accuracy would garner better consumer support. In this chapter, our focus will be on the techniques that enable us to achieve metrics). We designate a new model training setup to be more sample efficient, if it achieves similar or better performance with fewer data samples when compared to the baseline. Think of it as teaching a child efficient and/or label efficient training setup, can we exchange some of this to achieve a model with a better footprint? The next subsection elaborates it further. Using learning techniques to build smaller
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    it can be rewarding to go back to the drawing board and experiment with another architecture that better suits the task. As an analogy, when renovating a house to improve the lighting, it is possible to have been domesticated for a while and are safe. These two animals are more similar to each other than to a random animal like a chimp. Similarly, we know that we should maintain our distance from a snake Guardians of the Galaxy?), but it is not the safest animal to be in close proximity, though still safer than a snake or a bear. A domestic mouse on the other hand is not cute but nor very dangerous, but you
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    Finance L.P. All rights reserved. Performance – Better than Human Precision Recall Machine Human Machine Human Table Boundary 95% 94% 95% 95% Perfect Table 87% 82% 94% 94% • 48,607 pages evaluated
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 31. 过拟合与欠拟合

    过拟合&欠拟合 主讲人:龙良曲 Scenario1: house price Scenario2: GPA The ground-truth distribution? ▪ That’s perfect if known ▪ However Another factor: noise ▪ ? = ? ∗ ? + ? + ? ▪ ? ∽ ?(0.01, 1) ▪ 1.567 = w * well Case2: Ground-truth < Estimated over- fitting Overfitting ▪ train loss and acc. is much better ▪ test acc. is worse ▪ => Generalization Performance Overfitting ! ▪ how to detect ▪ how to
    0 码力 | 17 页 | 1.31 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    GPUs. It includes support for 8-bit floating point (FP8) precision on Hopper GPUs which provides better training and inference performance with lower memory utilization. Transformer Engine also includes mixed precision Tensor Cores on NVIDIA Volta and NVIDIA Turing™, so you can get results much faster than training without Tensor Cores. PyTorch Release 23.07 PyTorch RN-08516-001_v23.07 | 10 This relative positional encoding. The enhancements that were introduced in Transformer-XL help capture better long-term dependencies by attending to tokens from multiple previous segments. Our implementation
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    without taking a hit on any of the footprint metrics. These techniques might get superseded by other better methods over time, but again our goal is to give you a gentle introduction to this area for you to techniques like data-augmentation, distillation etc. as introduced in chapter 3 do help us achieve better quality with fewer labels and fewer training steps required for convergence, they do not alleviate compute-efficient. Pre-training + Fine-tuning helps the models converge faster, attain similar or better quality for the same amount of labeled data when compared to training from scratch, etc. ULMFiT
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    (2012): 1097-1105. do linear algebra operations such as multiplying two matrices together much faster than traditional CPUs. Advances in the training algorithms There has been substantial progress in machine matching it to the given guidelines. The ImageNet dataset was a big boon in this aspect. It has more than 1 million labeled images, where each image belongs to 1 out of 1000 possible classes. This helped If we have two models performing equally well on a given task, we would choose the one which does better on training or inference efficiency metrics, or both (depending on the use case). For example, if
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    Chapter 2 - Compression Techniques “I have made this longer than usual because I have not had time to make it shorter.” Blaise Pascal In the last chapter, we discussed a few ideas to improve the deep interested in compressing in a lossless or lossy manner. We can fit 10 apples in a smaller box with a better arrangement. This is lossless compression. Another approach is to chop them into cubes and discard frequent symbols will take the least number of bits to represent. In aggregate, this would be better than encoding each symbol with the same number of bits. The lookup table (figure 2-1 middle) that contains
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
共 30 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAutomationAdvancedCompressionTechniquesArchitecturesQCon北京2018键盘输入键盘输入神经网络神经网神经网络深度学习彭博应用李碧野PyTorch入门实战31拟合ReleaseNotesTechnicalReviewIntroduction
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩