积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(7)机器学习(7)

语言

全部英语(6)中文(简体)(1)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.072 秒,为您找到相关结果约 7 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture 6: Support Vector Machine

    equivalent to minimizing ∥ω∥2 = ωTω min ω,b ωTω s.t. y(i)(ωTx(i) + b) ≥ 1, ∀i This is a quadratic programming (QP) problem! Interior point method (https://en.wikipedia.org/wiki/Interior-point_method) Active problem, so the strong duality (p∗ = d∗) holds and the KKT conditions are respected Quadratic Programming problem in α Several off-the-shelf solvers exist to solve such QPs Some examples: quadprog (MATLAB)
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    efficient models capable of running on mobile and edge devices. We have also set up a couple of programming projects for a hands-on model optimization experience using these efficient layers and architectures How do DSC models perform on the quality metrics? To answer this question, we have prepared a programming project for you in the next section. We take up a novel task to train a model that predicts a segmentation
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    (x(i), y(i)), ωT x(i) +b ≥ 1 if y(i) = 1, and ωT x(i) + b ≤ 1 if y(i) = −1. This is a quadratic programming (QP) problem, and can be solved by exiting generic QP solvers, e.g., interior point method, active
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    evaluation is a boiler-plate code. There is not much we can do to make it interesting. We are programming in the python language. Naturally, it is possible to use other languages (like Java for Android
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    follows right after. Following the lead from the previous chapters, the theory is complemented with programming projects to assist readers to implement these techniques from scratch. Our journey of learning
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    总而言之,我们没有编写唤醒词识别器,而是编写了一个“学习”程序。如果我们用一个巨大的带标签的数 据集,它很可能可以“学习”识别唤醒词。这种“通过用数据集来确定程序行为”的方法可以被看作用数据 编程(programming with data)。比如,我们可以通过向机器学习系统,提供许多猫和狗的图片来设计一个 “猫图检测器”。检测器最终可以学会:如果输入是猫的图片就输出一个非常大的正数,如果输入是狗的图片 选择构成的所有可能 的组合进行求和。如果任何hi可以接受k个不同的值(有限的状态数),这意味着我们需要对kT 个项求和,这 个任务显然难于登天。幸运的是,有个巧妙的解决方案:动态规划(dynamic programming)。 352 9. 现代循环神经网络 要了解动态规划的工作方式,我们考虑对隐变量h1, . . . , hT 的依次求和。根据 (9.4.1),将得出: P(x1, . . . , xT 对于前几章中实现的那些模型,可以进一步提高它们的计算性能。例如,我们可以在不影响准确性的前提下, 大大减少训练时间。 12.1 编译器和解释器 目前为止,本书主要关注的是命令式编程(imperative programming)。命令式编程使用诸如print、“+” 和if之类的语句来更改程序的状态。考虑下面这段简单的命令式程序: def add(a, b): return a + b def fancy_func(a
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    use `export CUDA_MODULE_LOADING=EAGER` or `unset CUDA_MODULE_LOADING`. Refer to the CUDA C++ Programming Guide for more information about this environment variable. Announcements ‣ NVIDIA Deep Learning
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
共 7 条
  • 1
前往
页
相关搜索词
LectureSupportVectorMachineEfficientDeepLearningBookEDLChapterArchitecturesNotesonCompressionTechniques动手深度学习v2PyTorchRelease
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩