积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(22)机器学习(22)

语言

全部英语(17)中文(简体)(5)

格式

全部PDF文档 PDF(22)
 
本次搜索耗时 0.055 秒,为您找到相关结果约 22 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Keras: 基于 Python 的深度学习库

    个层,然后通过 传递一个张量来调用它。注意,在调用模型时,您不仅重用模型的结构,还重用了它的权重。 x = Input(shape=(784,)) # 这是可行的,并且返回上面定义的 10-way softmax。 y = model(x) 快速开始 18 这种方式能允许我们快速创建可以处理序列输入的模型。只需一行代码,你就将图像分类 模型转换为视频分类模型。 from keras 维的向量 input_sequences = Input(shape=(20, 784)) # 这部分将我们之前定义的模型应用于输入序列中的每个时间步。 # 之前定义的模型的输出是一个 10-way softmax, # 因而下面的层的输出将是维度为 10 的 20 个向量的序列。 processed_sequences = TimeDistributed(model)(input_sequences) 时间步都是一样的,你可以使用 noise_shape=(batch_size, 1, features)。 • seed: 一个作为随机种子的 Python 整数。 参考文献 • Dropout: A Simple Way to Prevent Neural Networks from Overfitting 5.2.4 Flatten [source] keras.layers.Flatten() 将输入展平。不影响批量大小。
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    计算任务到指定GPU设备 设备亲和性影响较小 设备亲和性影响较大 TensorFlow on Yarn技术细节揭秘 Yarn支持GPU调度ResourceManager端实现:� 扩展org.apache.hadoop.yarn.api.records.Resource抽象类及其实现,增加:� � public abstract int getGpuCores();� � public abstract � 1、对NodeManager GPU卡数量的统计管理� 2、调度器统计管理每个Pool的GPU设备数的分配情况� � 具体可以参考下面Patch的实现思路:� https://issues.apache.org/jira/browse/YARN-5517� TensorFlow on Yarn技术细节揭秘 Yarn支持GPU调度NodeManager端实现:� NodeManager yarn-site
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    数据 程序模型 GPUs & 计算加速 深度学习的爆发 图像理解 自然语言处理 语音识别 机器自主 AWS 之上的人工智能应用 Zillow • Zestimate (using Apache Spark) Howard Hughes Corp • Lead scoring for luxury real estate purchase predictions FINRA • Anomaly
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    Torch24和Theano25。许多开创性的论文都是用这些工具写的。到目前为止,它们已经被TensorFlow26 (通常通过其高级API Keras27使用)、CNTK28、Caffe 229和Apache MXNet30所取代。第三代工具,即用 于深度学习的命令式工具,可以说是由Chainer31率先推出的,它使用类似于Python NumPy的语法来 描述模型。这个想法被PyTorch32、MXNet的Gluon com/caffe2/caffe2 30 https://github.com/apache/incubator‐mxnet 31 https://github.com/chainer/chainer 32 https://github.com/pytorch/pytorch 33 https://github.com/apache/incubator‐mxnet 34 https://github randomly from SATA SSD 500 μs DC S3510 SATA SSD (QOS 99.9%) Round trip within same datacenter 500 μs One‐way ping is ~250μs Read 1MB sequentially from SATA SSD 2 ms ~550MB/s DC S3510 SATA SSD Read 1MB sequentially
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    tasks can be to predict the last element (future) from the previous elements (past), or the other way around. Again to re-emphasize we are just pretending that the data is missing for the sake of the pretext (refer figure 6-4 (b)). The authors report that the network trained in a self-supervised manner this way can be fine-tuned to perform nearly as well as a fully supervised network. 3 Gidaris, Spyros, et al 70% accuracy on ImageNet with only 13 labels per class is a hard task, because ImageNet is a 1000-way classification problem. Therefore you should consider fine-tuning existing contrastive learning checkpoints
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    currently trending content, the model will assign a high probability to Seinfeld. While there is no way of predicting with absolute certainty the exact content that you would end up clicking on, at that between Artificial Intelligence, Machine Learning, and Deep Learning. Deep learning is one possible way of solving machine learning problems. Machine learning in turn is one approach towards artificial that the image is an apple, when using soft labels. Hard labels would penalize both mistakes the same way. In the original paper which proposed distillation, Hinton et al. replicated performance of an ensemble
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    to chop them into cubes and discard the odd parts. An even smaller box can fit those 10 apples this way. We can call this lossy compression because we lost the odd parts. The choice of the technique depends xmax], and there are no clusters of values in any part. Now that we have the assumptions out of the way, instead of working with a 32-bit for storing x, let us assume we have a b-bit unsigned integer for The solution to this specific exercise is in this notebook. Solution: With the logistics out of the way, let’s look at how to solve this exercise. We use NumPy for this solution. It supports vector operations
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    both to be cute. However, a picture of a snake or a grizzly bear might trigger caution or fear. In a way, we subconsciously group these animals in our head. We don’t necessarily know everything about a dog learning models and inputs such as text, which are not in numerical format, having an algorithmic way to meaningfully represent these inputs using a small number of numerical features, will help us solve not only slow but also relies on our intuition about both the features and their values. Is there a way to automate the embedding table generation? Turns out there is! In the next section, let's go over
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    they can learn to identify them with high accuracy. All cups have the same basic shape. One possible way to teach a child is to look at the same cup from different angles and rotations, in varying degrees 3) The nlpaug_fn() function just wraps up the augmentation calls in a tf.py_function, a tensorflow way to call python code. def nlpaug_fn(aug): def pyfn(text): text = text.numpy().decode("utf-8") text transferring the lessons (learnings) from a larger model or an ensemble of models to a smaller model. In a way, it is an extension of model based data augmentation techniques like GANs such that instead of training
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Experiment 6: K-Means

    16. By making this reduction, it would 1 be possible to represent the photo in a more efficient way by storing only the RGB values of the 16 colors present in the image. In this exercise, you will use small image. When you have recalculated the large image, you can display and save it in the following way: %Display imshow ( uint8 (round( large image ) ) ) % Save image imwrite ( uint8 (round( large image
    0 码力 | 3 页 | 605.46 KB | 1 年前
    3
共 22 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
Keras基于Python深度学习TensorFlowonYarn遇上数据亚马亚马逊AWSAIServicesOverview动手v2EfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReviewIntroductionCompressionArchitecturesExperimentMeans
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩