积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(25)机器学习(25)

语言

全部中文(简体)(14)英语(11)

格式

全部PDF文档 PDF(25)
 
本次搜索耗时 0.087 秒,为您找到相关结果约 25 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 深度学习与PyTorch入门实战 - 43. nn.Module

    nn.Module 主讲人:龙良曲 Magic ▪ Every Layer is nn.Module ▪ nn.Linear ▪ nn.BatchNorm2d ▪ nn.Conv2d ▪ nn.Module nested in nn.Module 1. embed current layers ▪ Linear ▪ ReLU ▪ Sigmoid ▪ Conv2d ▪ ConvTransposed2d
    0 码力 | 16 页 | 1.14 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    MF (Intel 80186) 1990 10 K (光学字符识别) 10 MB 10 MF (Intel 80486) 2000 10 M (网页) 100 MB 1 GF (Intel Core) 2010 10 G (广告) 1 GB 1 TF (Nvidia C2050) 2020 1 T (社交网络) 100 GB 1 PF (Nvidia DGX‐2) 很明显,随机存取存储 Torch24和Theano25。许多开创性的论文都是用这些工具写的。到目前为止,它们已经被TensorFlow26 (通常通过其高级API Keras27使用)、CNTK28、Caffe 229和Apache MXNet30所取代。第三代工具,即用 于深度学习的命令式工具,可以说是由Chainer31率先推出的,它使用类似于Python NumPy的语法来 描述模型。这个想法被PyTorch32、MXNet的Gluon com/caffe2/caffe2 30 https://github.com/apache/incubator‐mxnet 31 https://github.com/chainer/chainer 32 https://github.com/pytorch/pytorch 33 https://github.com/apache/incubator‐mxnet 34 https://github
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    cuBLAS 12.1.3.1 ‣ NVIDIA cuDNN 8.9.3 ‣ NVIDIA NCCL 2.18.3 ‣ NVIDIA RAPIDS™ 23.06 ‣ Apex ‣ rdma-core 39.0 ‣ NVIDIA HPC-X 2.15 ‣ OpenMPI 4.1.4+ ‣ GDRCopy 2.3 ‣ TensorBoard 2.9.0 ‣ Nsight Compute For more information about AMP, see the Training With Mixed Precision Guide. Tensor Core Examples The tensor core examples provided in GitHub and NGC focus on achieving the best performance and convergence GitHub. ‣ SE-ResNext model: This ResNeXt101-32x4d model has an added Squeeze-and- Excitation (SE) module that was introduced in the Squeeze-and-Excitation Networks paper. This model script is available
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 keras tutorial

    ............................................................................................ 18 Core Modules ......................................................................................... ... 20 backend module ............................................................................................................................................ 21 utils module ................. intelligence(AI), audio & video recognition and image recognition. Artificial neural network is the core of deep learning methodologies. Deep learning is supported by various libraries such as Theano, TensorFlow
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    attention_mask=ret["attention_mask"][0], ) self.cached_data_dict[i] = ret return ret def make_supervised_data_module( tokenizer: transformers.PreTrainedTokenizer, data_args, max_len, ) -> Dict: """Make dataset and return dict(train_dataset=train_dataset, eval_dataset=eval_dataset) 然 后 我 们 利 用 make_supervised_data_module , 通 过 使 用 SupervisedDataset 或 LazySupervisedDataset 来构建数据集。 def train(): global local_rank parser enable_input_require_grads() (续下页) 1.12. 有监督微调 33 Qwen (接上页) # Load data data_module = make_supervised_data_module( tokenizer=tokenizer, data_args=data_args, max_len=training_args.model_max_ �→length
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    establish our motivation behind seeking efficiency in deep learning models. We will also introduce core areas of efficiency techniques (compression techniques, learning techniques, automation, efficient tradeoff. To that end, we can think of work on efficient deep learning to be categorized in roughly four core areas, with infrastructure and hardware forming the foundation (see Figure 1-7). 7 Lossy compression detail in Chapter 2. (Figure 1-7: A mental model of Efficient Deep Learning, which comprises the core areas and relevant techniques as well as the foundation of infrastructure, hardware and tools.)
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    数据 程序模型 GPUs & 计算加速 深度学习的爆发 图像理解 自然语言处理 语音识别 机器自主 AWS 之上的人工智能应用 Zillow • Zestimate (using Apache Spark) Howard Hughes Corp • Lead scoring for luxury real estate purchase predictions FINRA • Anomaly frame/sec with 640x480 resolution 处处可部署 Beyond BlindTool by Joseph Paul Cohen, demo on Nexus 4 Fit the core library with all dependencies into a single C++ source file Easy to compile on
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    ropy', optimizer='rmsprop') 关于 KERAS 网络层 117 5.13 编写你自己的 Keras 层 对于简单、无状态的自定义操作,你也许可以通过 layers.core.Lambda 层来实现。但是 对于那些包含了可训练权重的自定义层,你应该自己实现这种层。 这是一个 Keras2.0 中,Keras 层的骨架(如果你用的是旧的版本,请你更新)。你只需要实 Keras Model 对象。 参考文献 • Rethinking the Inception Architecture for Computer Vision License 预训练权值基于 Apache License。 13.3.6 InceptionResNetV2 keras.applications.inception_resnet_v2.InceptionResNetV2(include_top=True Keras Model 对象。 参考文献 • Rethinking the Inception Architecture for Computer Vision License 预训练权值基于 Apache License。 13.3.7 MobileNet keras.applications.mobilenet.MobileNet(input_shape=None, alpha=1.0,
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    我们将网络实现为一个自定义网络类,只需要在初始化函数中创建各个子网络层,并 在前向计算函数 forward 中实现自定义网络类的计算逻辑即可。自定义网络类继承自 nn.Module 基类,这也是自定义网络类的标准写法,以方便地利用 nn.Module 基类提供的 parameters、load_state_dict、state_dict 等各种便捷功能。网络模型类实现如下: import torch nn from torch.nn import functional as F from torch import optim class MyNetwork(nn.Module): def __init__(self): super(MyNetwork, self).__init__() # 创建 3 个全连接层 datasets from torchvision import transforms from torch import nn, optim class LeNet5(nn.Module): def __init__(self): super(LeNet5, self).__init__() # 网络容器
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    计算任务到指定GPU设备 设备亲和性影响较小 设备亲和性影响较大 TensorFlow on Yarn技术细节揭秘 Yarn支持GPU调度ResourceManager端实现:� 扩展org.apache.hadoop.yarn.api.records.Resource抽象类及其实现,增加:� � public abstract int getGpuCores();� � public abstract � 1、对NodeManager GPU卡数量的统计管理� 2、调度器统计管理每个Pool的GPU设备数的分配情况� � 具体可以参考下面Patch的实现思路:� https://issues.apache.org/jira/browse/YARN-5517� TensorFlow on Yarn技术细节揭秘 Yarn支持GPU调度NodeManager端实现:� NodeManager yarn-site
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
共 25 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
深度学习PyTorch入门实战43nnModule动手v2ReleaseNoteskerastutorialAI模型千问qwen中文文档EfficientDeepLearningBookEDLChapterIntroduction亚马亚马逊AWSAIServicesOverviewKeras基于Python深度学习TensorFlowonYarn遇上数据
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩