TensorFlow on Yarn:深度学习遇上大数据计算任务到指定GPU设备 设备亲和性影响较小 设备亲和性影响较大 TensorFlow on Yarn技术细节揭秘 Yarn支持GPU调度ResourceManager端实现:� 扩展org.apache.hadoop.yarn.api.records.Resource抽象类及其实现,增加:� � public abstract int getGpuCores();� � public abstract � 1、对NodeManager GPU卡数量的统计管理� 2、调度器统计管理每个Pool的GPU设备数的分配情况� � 具体可以参考下面Patch的实现思路:� https://issues.apache.org/jira/browse/YARN-5517� TensorFlow on Yarn技术细节揭秘 Yarn支持GPU调度NodeManager端实现:� NodeManager yarn-site SparkFlow:360系统部⼤数据团队设计的TensorFlow on Spark解决⽅案� • Coordinator负责协调生成ClusterSpec(扩展的TensorFlow gRPC server) • Worker通过读取RDD获取训练样本 • RDD的数据cache到内存或者磁盘供多次迭代训练使用 SparkFlow介绍 SparkFlow与TensorFlow on Yarn对比:�0 码力 | 32 页 | 4.06 MB | 1 年前3
Keras: 基于 Python 的深度学习库Python shell 并通过下面的命令加载模块 import h5py 快速开始 38 如 果 模 块 导 入 没 有 错 误, 那 么 模 块 已 经 安 装 成 功, 否 则 你 可 以 在 http://docs.h5py.org/en/latest/build.html 中找到详细的安装说明。 模型 39 4 模型 4.1 关于 Keras 模型 在 Keras 中有两类主要的模型:Sequential RemoteMonitor(root='http://localhost:9000', path='/publish/epoch/end/', field='data', headers=None) 将事件数据流到服务器的回调函数。 需要 requests 库。事件被默认发送到 root + '/publish/epoch/end/'。采用 HTTP POST ,其中的 data 参数是以 字符串;目标服务器的根地址。 • path: 字符串;相对于 root 的路径,事件数据被送达的地址。 • field: 字符串;JSON ,数据被保存的领域。 • headers: 字典;可选自定义的 HTTP 的头字段。 11.1.9 LearningRateScheduler [source] keras.callbacks.LearningRateScheduler(schedule, verbose=0)0 码力 | 257 页 | 1.19 MB | 1 年前3
亚马逊AWSAI Services Overview数据 程序模型 GPUs & 计算加速 深度学习的爆发 图像理解 自然语言处理 语音识别 机器自主 AWS 之上的人工智能应用 Zillow • Zestimate (using Apache Spark) Howard Hughes Corp • Lead scoring for luxury real estate purchase predictions FINRA • Anomaly initialization • getAction() • setPerception(nextObservation,action,reward,termina l) • Resources: • http://ww1.sinaimg.cn/mw690/8708cad7jw1f8naomr mweg209n0fo7wj.gif • https://github.com/li-haoran/DRL-FlappyBird0 码力 | 56 页 | 4.97 MB | 1 年前3
动手学深度学习 v2.0多个输出,并为论坛提供讨论。 虽然我们的体系尚不完善,但这些选择在相互冲突的问题之间提供了一个很好的妥协。我们相信,这可能是 第一本使用这种集成工作流程出版的书。 1 http://distill.pub 2 http://discuss.d2l.ai 2 目录 在实践中学习 许多教科书教授一系列的主题,每一个都非常详细。例如,Chris Bishop的优秀教科书 (Bishop, 2006) Fiete Lüer, Surbhi Vijayvargeeya, Muhyun Kim, dennismalmgren, adursun, Anirudh Dagar, liqingnz, 3 http://learnpython.org/ 4 https://discuss.d2l.ai/ 6 目录 Pedro Larroy, lgov, ati‐ozgur, Jun Wu, Matthias 需先将当前路径定位到刚下载的本书代码解压后的目录): jupyter notebook 9 https://developer.nvidia.com/cuda‐downloads 10 目录 现在可以在Web浏览器中打开http://localhost:8888(通常会自动打开)。由此,我们可以运行这本书中每个 部分的代码。在运行书籍代码、更新深度学习框架或d2l软件包之前,请始终执行conda activate d2l以激活0 码力 | 797 页 | 29.45 MB | 1 年前3
AI大模型千问 qwen 中文文档Qwen1.5-7B-Chat 为例: python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen1.5-7B-Chat 然后,您可以使用 create chat interface 来与 Qwen 进行交流: curl http://localhost:8000/v1/chat/completions -H "Content-Type: openai import OpenAI # Set OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( (续下页) 1.2. 快速开始 5 Qwen (接上页) │ ├── merges.txt │ │ ├── tokenizer_config.json │ │ └── vocab.json 随后你需要运行 python server.py 来启动你的网页服务。请点击进入 `http://localhost:7860/?__theme=dark` 然后享受使用 Qwen 的 Web UI 吧! 1.6.2 下一步 TGW 中包含了许多更多用途0 码力 | 56 页 | 835.78 KB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112Advances in Neural Information Processing Systems 32 (页 8024–8035). Curran Associates, Inc. 检索来源: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep- learning-library import pandas as pd # 在线下载汽车效能数据集 dataset_path = keras.utils.get_file("auto-mpg.data", "http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto- mpg.data") # 利用 pandas 读取数据 --logdir path 指定 Web 后端监控的文件目录 path,即可打开 Web 后端监控进 程,如图 8.2 所示: 图 8.2 启动 Web 服务器 此时打开浏览器,并输入网址 http://localhost:6006 (也可以通过 IP 地址远程访问,具体 端口号可能会变动,可查看命令提示) 即可监控网络训练进度。TensorBoard 可以同时显示 多条监控记录,在监控页面的左侧可以选择监控记录,如图0 码力 | 439 页 | 29.91 MB | 1 年前3
PyTorch Release Notes4.6.1 ‣ Jupyter Notebook 6.0.3 ‣ JupyterLab 2.3.2, including Jupyter-TensorBoard ‣ JupyterLab Server 1.0.6 ‣ Jupyter-TensorBoard Driver Requirements Release 22.08 is based on CUDA 11.7.1, which requires 4.6.1 ‣ Jupyter Notebook 6.0.3 ‣ JupyterLab 2.3.2, including Jupyter-TensorBoard ‣ JupyterLab Server 1.0.6 ‣ Jupyter-TensorBoard Driver Requirements Release 22.07 is based on CUDA 11.7 Update 1 Preview 4.6.1 ‣ Jupyter Notebook 6.0.3 ‣ JupyterLab 2.3.2, including Jupyter-TensorBoard ‣ JupyterLab Server 1.0.6 ‣ Jupyter-TensorBoard Driver Requirements Release 22.06 is based on CUDA 11.7 Update 1 Preview0 码力 | 365 页 | 2.94 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波serving server server server worker Model Serving System Serving PS Traing PS Traing Model System Predict Score Sample Data worker worker worker 3 在线机器学习-参数服务器 serving serving serving server server server server server server worker worker worker PSscheduler PSserver PSserver PSserver PSagent PSagent zookeeper PSproxy PSproxy PSsubmit File System checkpoint Model Training System Model Status set/get Model delete Model Save Model Load HA Fault tolerance checkpoint Local HDFS Param Server System Model Serving System 3 在线机器学习-参数服务器 • 参数规模 • 支持百亿特征维度,千亿参数 • 模型版本 • 多模型多版本:多组实验并行执行,提高实验迭代效率0 码力 | 36 页 | 16.69 MB | 1 年前3
搜狗深度学习技术在广告推荐领域的应用查询特征 广告特征 匹配特征 线性模型 非线性模型 Data Feature Model 线上Server CTR预估 Rank Online 特征抽取 CTR预估涉及技术 CTR预估 数据 模型 平台 MPI XgBoost Parameter Server 线性(LR) 非线性(GBDT) 深度(DNN) 实时(FTRL) 特征 训练数据 融合模型 Feature Maker One Case ALL One Hot 特征 Final CTR Bidding Server OFFLINE ONLINE OneHot Float LR Model DNN Model Retriever Server CTR Table DNN Model Feature LR Model Feature 特 征 池0 码力 | 22 页 | 1.60 MB | 1 年前3
从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱内存成为主要资源瓶颈。由于需要等待全部参数 就绪,Parameter Server难以利⽤速度慢的存储 介质 样本读取 样本解析 参数拉 取 训练 参数更新 查询Sparse Table 查询Dense Tensor Reader Learner Worker 返回参数 Request Handler Parameter Server 查询Sparse Table 查询Dense Tensor 参数更新 查询Sparse Table 查询Dense Tensor Reader Learner Worker 返回参数 Request Handler Parameter Server 更新参数 � 异步参数处理流⽔线 参数 预准备 Batch⼊队列 Batch⼊队列 � 效果: � 在不影响训练效果的情况下,降低参数准备与更新耗时,提 ⾼训练速度。训练耗时下降超50%0 码力 | 22 页 | 6.76 MB | 1 年前3
共 56 条
- 1
- 2
- 3
- 4
- 5
- 6













