 机器学习课程-温州大学-numpy使用总结NumPy诞生为了弥补这些缺陷。它提供了两种基本的对象: ndarray:全称(n-dimensional array object)是储存单一数据类型的 多维数组。 ufunc:全称(universal function object)它是一种能够对数组进行处 理的函数。 NumPy的官方文档: https://docs.scipy.org/doc/numpy/reference/ NumPy是什么? ufunc函数 01 NumPy概述 02 NumPy数组(ndarry)对象 03 ufunc函数 04 NumPy的函数库 24 ufunc函数 ufunc是universal function的简称,它是一种能对数组每个元素进 行运算的函数。NumPy的许多ufunc函数都是用C语言实现的,因此 它们的运算速度非常快。 > x = np.linspace(0, 2*np0 码力 | 49 页 | 1.52 MB | 1 年前3 机器学习课程-温州大学-numpy使用总结NumPy诞生为了弥补这些缺陷。它提供了两种基本的对象: ndarray:全称(n-dimensional array object)是储存单一数据类型的 多维数组。 ufunc:全称(universal function object)它是一种能够对数组进行处 理的函数。 NumPy的官方文档: https://docs.scipy.org/doc/numpy/reference/ NumPy是什么? ufunc函数 01 NumPy概述 02 NumPy数组(ndarry)对象 03 ufunc函数 04 NumPy的函数库 24 ufunc函数 ufunc是universal function的简称,它是一种能对数组每个元素进 行运算的函数。NumPy的许多ufunc函数都是用C语言实现的,因此 它们的运算速度非常快。 > x = np.linspace(0, 2*np0 码力 | 49 页 | 1.52 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical ReviewWikiText-103 dataset is derived from English Wikipedia pages. 4 Howard, Jeremy and Sebastian Ruder. "Universal Language Model Fine-tuning for Text Classification." arXiv, 18 Jan. 2018, doi:10.48550/arXiv.1801 objective function can help with generalization. Sharpness Aware Minimization Neural networks are universal function approximators (i.e. given enough parameters, they can learn any function) and their objective0 码力 | 31 页 | 4.03 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical ReviewWikiText-103 dataset is derived from English Wikipedia pages. 4 Howard, Jeremy and Sebastian Ruder. "Universal Language Model Fine-tuning for Text Classification." arXiv, 18 Jan. 2018, doi:10.48550/arXiv.1801 objective function can help with generalization. Sharpness Aware Minimization Neural networks are universal function approximators (i.e. given enough parameters, they can learn any function) and their objective0 码力 | 31 页 | 4.03 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquessince this would lead to a 32 / 8 = 4x reduction in space. This fits in well since there is near-universal support for unsigned and signed 8-bit integer data types. 4. The quantized weights are persisted0 码力 | 33 页 | 1.96 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquessince this would lead to a 32 / 8 = 4x reduction in space. This fits in well since there is near-universal support for unsigned and signed 8-bit integer data types. 4. The quantized weights are persisted0 码力 | 33 页 | 1.96 MB | 1 年前3
共 3 条
- 1













