积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(100)机器学习(100)

语言

全部中文(简体)(73)英语(27)

格式

全部PDF文档 PDF(100)
 
本次搜索耗时 0.092 秒,为您找到相关结果约 100 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 rwcpu8 Instruction Install miniconda pytorch

    This guideline shows how to use/install Miniconda and PyTorch on rwcpu8.cse.ust.hk Using Global Miniconda and PyTorch If you don't want to install Miniconda and PyTorch yourself, you can use the global cshrc_user rm ~/.tcshrc conda --help conda create -n pytorch conda activate pytorch (pytorch) rwcpu8.cse.ust.hk:your_username:101> conda install pytorch torchvision cudatoolkit=10.2 -c pytorch python
    0 码力 | 3 页 | 75.54 KB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》8-TensorFlow社区参与指南

    0 码力 | 46 页 | 38.88 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    .......................................................................................29 Chapter 8. PyTorch Release 23.03............................................................................. is a library for accelerating Transformer models on NVIDIA GPUs. It includes support for 8-bit floating point (FP8) precision on Hopper GPUs which provides better training and inference performance with 4.1 22.06 NVIDIA CUDA 11.7 Update 1 Preview 1.13.0a0+340c412 22.05 NVIDIA CUDA 11.7.0 1.12.0a0+8a1a93a TensorRT 8.2.5 22.04 NVIDIA CUDA 11.6.2 1.12.0a0+bd13bc6 TensorRT 8.2.4.2 22.03 20.04 NVIDIA
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 keras tutorial

    ............................................................................................. 51 8. Keras ― Customized Layer ......................................................................... Downloading https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353 c330e59be8cf2d47c0b11d3cde8/ numpy-3.1.1-cp36-cp36m- macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64. macosx_10_10_intel Downloading https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353 c330e59be8cf2d47c0b11d3cde8/ pandas-3.1.1-cp36-cp36m- macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64. macosx_10_10_intel
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    163.com/course/courseMain.h tm?share=2&shareId=480000001847407& courseId=1208894818&_trace_c_p_k2_=8 d1b10e04bd34d69855bb71da65b0549 预览版202112 简 要 目 录 人工智能绪论 1.1 人工智能 1.2 神经网络发展简史 1.3 预览版202112 7.6 链式法则 7.7 反向传播算法 7.8 Himmelblau 函数优化实战 7.9 反向传播算法实战 7.10 参考文献 第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 能力有限。随着计算能力的提升和大数据时代的到来,高度并行化的 GPU 和海量数据让大 规模神经网络的训练成为可能。 2006 年,Geoffrey Hinton 首次提出深度学习的概念。2012 年,8 层的深层神经网络 AlexNet 发布,并在图片识别竞赛中取得了巨大的性能提升,此后几十层、数百层、甚至 上千层的神经网络模型相继提出,展现出深层神经网络强大的学习能力。业界一般将利用 深层神经网
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    integer. 1 Deep Learning with Python by Francois Chollet # uint8 is the smallest data type supported by numpy. return x_q.astype(np.uint8) The code is self-explanatory. We receive a vector of x values exceed 2b - 1. The final returned vector’s type is converted to the uint8 data type. Note that b might be less than 8, in which case uint8 leads to unnecessary space wastage. If that is indeed the case, you bit-shifting). For example, if you pick b = 4, you might want to pack two quantized values in a uint8 manually, and unpack them when decoding the data. Now let’s run the code for the range [-10, 10], incrementing
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    inputs, and the label for a given sample text in the Skipgram task. Let’s get to solving the CBOW task8 step by step and train an embedding table in the process. We will start with creating a vocabulary of to 1.0), and the output probabilities of a few other random classes (which should be close to 0.0). 8 Solving Skipgram is going to be identical, and is left as an exercise to the reader! We always wanted distribution, say the uniform distribution, with a nice range, say [-0.05, 0.05]. Refer to Figure 4-8. Figure 4-8: Initializing the embedding table at the beginning with a uniform probability distribution in
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》7-实战TensorFlow人脸识别

    b����o���u 7AE5E9���8��C�,� � ���� � ���c�� �tP�a��� +�4���6�9�8�� �����Fi���0�Wf �tP�a �8��4�BE9 ����Fi�����Wf �tP�a 2E�D�3�- ����������k��Le��� WKFM�������WK tP�a��o� 2��8�8�� ����������������WK �tP�a����o� FDDB: Face Detection Data Set and Benchmark �������A7� BBB�2��������4���5��1�7:�4�����8 Li����p����������F�u�rn�S��p�c�ef���b��L i��osv���� M ��/ ��pm�� ���� �Li� ���� ��a�dt�lUW ��.:7A4��7�D��5� �hd��9����e��:��������:����k C�9��������c������j��A�����k ����R�� R�� �� �� /--�)�/579�-9D97D�A��-5D5�39D� 5�8��9�7��5B� ������F������ �����S 40-�2 /��� ����� ��F�(������ ��S 15B:9�C75�9��9�9�/579C �DDB��ED9C���9�9��
    0 码力 | 81 页 | 12.64 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    7.5 训练模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 vi 8 循环神经网络 289 8.1 序列模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 实现更复杂的模型奠定了基础。接下来,在 6节 和 7节 中,我们介绍了卷积神经网络(convolutional neural network,CNN),这是构成大多数现代计算机视觉系统骨干的强大工具。随后,在 8节 和 9节 中,我们引入了循环神经网络(recurrent neural network,RNN),这是一种利用数据中的时间或序列 结构的模型,通常用于自然语言处理和时间序列预测。在 10节 中,我们介绍了一类新的模型,它采用 ai/ 7 https://discuss.d2l.ai/t/2086 8 目录 安装 我们需要配置一个环境来运行 Python、Jupyter Notebook、相关库以及运行本书所需的代码,以快速入门并 获得动手学习经验。 安装 Miniconda 最简单的方法就是安装依赖Python 3.x的Miniconda8。如果已安装conda,则可以跳过以下步骤。访 问Miniconda网站,根据Python3
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . 7 3 快速开始 8 3.1 Sequential 顺序模型指引 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1.1 开始使用 Keras 顺序 (Sequential) 模型 . . . . . . . . . . . . . . . . . . . . . 8 3.1.2 指定输入数据的尺寸 指定输入数据的尺寸 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1.3 编译 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.4 训练 . . . . . . . . . . . . . . . VII 7.2.14 cosine_proximity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8 评估标准 Metrics 137 8.1 评价函数的用法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
共 100 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10
前往
页
相关搜索词
rwcpu8InstructionInstallminicondapytorchTensorFlow快速入门实战社区参与指南PyTorchReleaseNoteskerastutorial深度学习EfficientDeepLearningBookEDLChapterCompressionTechniquesArchitectures人脸识别人脸识别动手深度学习v2Keras基于Python
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩