动手学深度学习 v2.0Kaggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 4.10.3 访问和读取数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 4.10.4 数据预处理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 5.2.1 参数访问 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 5.2.2 参数初始化 3 提交主要更改 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764 16.6 d2l API 文档 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767 16.60 码力 | 797 页 | 29.45 MB | 1 年前3
AI大模型千问 qwen 中文文档; • 对基础模型和 Chat 模型的多语言支持 • 基础模型和聊天模型都支持多种语言; • 支持工具调用、RAG(检索增强文本生成)、角色扮演、AI Agent 等; 想了解更多信息,欢迎访问: • 博客 • GitHub • Hugging Face • ModelScope • Qwen1.5 Collection 加入社区,加入 Discord 和 微信群 。很期待见到你们! 下,我们将展示如何使用 vLLM 构建一个与 OpenAI API 兼容的 API 服务。 首先,确保你已经安装 vLLM>=0.3.0 : pip install vllm 运行以下代码以构建 vllm 服务。此处我们以 Qwen1.5-7B-Chat 为例: python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen1.5-7B-Chat OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( (续下页) 1.2. 快速开始 5 Qwen (接上页) api_key=openai_api_key, b0 码力 | 56 页 | 835.78 KB | 1 年前3
亚马逊AWSAI Services Overview对话引擎 Rekognition 图像分析 深度学习框架 MXNet, TensorFlow, Theano, Caffe, Torch 为客户模型定制的 深度学习框架 人工智能 的托管的 API服务 Amazon AI: 新的深度学习服务 Polly Lex Rekognition 深度学习框架 MXNet, TensorFlow, Theano, Caffe, Torch 控制力 • 简单 • 混合了声明式(declarative)和命令式()代码的特点 为什么选择 MXNet ? MXNet: 可扩展的深度学习框架 MXNet 框架的特点 命令式 NDArray API 声明式 Symbolic Executor MXNet: 博采众家之长 3D Image Construction https://github.com/piiswrong/deep3d 企业应用的连接 Amazon Lex Mobile App Mobile Hub SaaS Connector Amazon API Gateway AWS Lambda 1: Understand user intent Amazon API Gateway AWS Lambda 3: Translate REST response into natural0 码力 | 56 页 | 4.97 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112可满足大部分场合的运 算精度要求,部分对精度要求较高的算法,如某些强化学习算法,可以选择使用 torch.int64 和 torch.float64 精度保存张量。 4.2.1 读取精度 通过访问张量的 dtype 成员属性可以判断张量的保存精度,例如: In [15]: a = torch.tensor(np.pi, dtype=torch.float64) # 64 位 print('before:' # 输出大小 Out[48]: torch.Size([4, 16, 30, 30]) 其中卷积核张量?也是 4 维张量,可以通过 weight 成员变量访问: In [49]: layer.weight.shape # 访问卷积核权值张量 Out[49]: torch.Size([16, 3, 3, 3]) 4.6 索引与切片 通过索引与切片操作可以提取张量的部分数据,它们的使用频率非常高,需要熟练掌 2017 年开始, Keras 的大部分组件被整合到 TensorFlow 框架中。2019 年,在 TensorFlow 2 版本中,Keras 被正式确定为 TensorFlow 的高层唯一接口 API,取代了 TensorFlow 1 版本中自带的 tf.layers 等高层接口。也就是说,现在只能使用 Keras 的接口来完成 TensorFlow 层方式的 模型搭建与训练。在 TensorFlow0 码力 | 439 页 | 29.91 MB | 1 年前3
Keras: 基于 Python 的深度学习库2018 by Keras-Team 前 言 整理 Keras: 基于 Python 的深度学习库 PDF 版的主要原因在于学习 Keras 深度学习库时方 便本地查阅,下载最新 PDF 版本请访问: https://github.com/wanzhenchn/keras-docs-zh。 感谢 keras-team 所做的中文翻译工作,本文档制作基于此处。 严正声明:本文档可免费用于学习 LSTM 模型 . . . . . . . . . . . . 15 3.2 函数式 API 指引 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 开始使用 Keras 函数式 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Sequential 顺序模型 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.1 Sequential 顺序模型 API . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 257 页 | 1.19 MB | 1 年前3
李东亮:云端图像技术的深度学习模型与应用20 SACC2017 360电脑安全产品 月活跃数达到4.42亿 360手机安全产品 移动端用户总数已达约1.49亿 360浏览器 月活跃用户数量为3.03亿 360导航 日均独立访问用户为8900万人 日均点击量约为4.51亿次 360搜索 稳定拥有35%以上的市场份额 中国最大的互联网安全公司 360智能硬件 智能摄像头超400万,儿童手表超 350万,行车记录仪超300万 Predictor 检测 RNN SACC2017 360小水滴摄像机:视觉大不同 小水滴·360智能摄像机 视觉大不同 你不在家时有它在 通过语音人工智能实现求救与留言功能 Cloud-API 每天调用1.5亿次!2000QPS! SACC2017 系统框架 n 根据业务需求,对图像人脸进行识别,将结果推送到业务端 n 基于深度学习的准确的人脸检测、特征抽取 n 人脸检测占用95%计算资源0 码力 | 26 页 | 3.69 MB | 1 年前3
从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱User与推荐系统交互,7*24⼩时 流式学习 1.2 Item和User新增,离开/遗忘, Embedding空间动态变化。 短期命中的⾼频key随时间缓慢变化 少量的⾼频key占据了主要访问需求 ⼀段时间样 本命中的 unique key ID/tag/交叉特征 (全量为:亿,千亿) ⼩特征 (个) 中型特征 (百) ID/tag/交叉特征 (千,千万) ⼩特征 (个) 热⻔⽂章的特征,活跃⽤户的特征 推荐系统 模型上线 在线推理 模型训练 ⽂章 新闻 视频 Item User Item特征 ⽤户反馈 Item推荐 Embedding参数 本⼩时访问过的key 上⼩时访问过的key 访 问 百 分 ⽐ 时间(⼩ 时) � Feature 2(数据的时空特点) 2.1 短时间内只有部分item和user被 命中,只有部分参数被⽤到 � Feature GPU多线程并⾏计算能⼒对稀疏数据不友好 � ⽅案 � 原有:内存能够存储的参数->对应的样本量Group � 新增:显存能够存储的参数->对应的样本量Pass � 新增:GPU并⾏操作友好->CSR格式的显存数据访问 SSD磁盘 10TB 全部参数 内存 1TB 即将⽤到的参数 显存 32/40/80GB 正在训练的参数 分布式训练的慢机与同步问题 � Feature 2.1: 短时间内只有部分item和user被命中,0 码力 | 22 页 | 6.76 MB | 1 年前3
《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别一起开发和维护的一款分叉自 PIL 的图像工具库。 至今,社区依然非常活跃,Pillow 仍在快速迭代。 Pillow提供广泛的文件格式支持,高效的内部表示和相当强大的图像处理功能。 核心图像库旨在快速访问以几种基本像素格式存储的数据, 它应该为一般的图像处理工 具提供坚实的基础。 https://github.com/python-pillow/Pillow captcha Catpcha Flask 启动 验证码识别服务 $ export FLASK_ENV=development && flask run --host=0.0.0.0 打开浏览器访问测试 URL(http://localhost:5000/ping) 访问 验证码识别服务 $ curl -X POST -F image=@2140.png 'http://localhost:5000/predict' 21400 码力 | 51 页 | 2.73 MB | 1 年前3
Qcon北京2018-《文本智能处理的深度学习技术》-陈运文更新模型 评分 返回 增强学习优化模块 最优摘要结果 生成式摘要 知识图谱关系抽取:联合学习方法 输入句子 命名实体识别 和关系分类 输出 美国总统特朗普将访问中国。 难点:结构复杂 美国 总统 特朗普 将 访问 中国。 地名 人名 地名 国家-总统 (美国,国家-总统,特朗普) 知识图谱关系抽取:基于深度学习 基于参数共享的方法 对于输入句子通过共用的 word embedding0 码力 | 46 页 | 25.61 MB | 1 年前3
深度学习在电子商务中的应用与cluster j的余弦相似度 Random: 生成一个0 – 1之间的随机数 基于词语聚类的矢量化模型 12 • 把搜索词和商品文档各自作为整体看待,直接学习训练各自的矢量值 • 通过分析用户每次访问的行为顺序, 构建有“搜索词”和“商品文档”组成的句子 • 训练集是采用苏宁易购的用户搜索日志作为来源。在经过数据清理之后,按照搜索的 时间顺序,结合商品的点击,商品放入购物车,商品的购买这些用户行为,而建立的0 码力 | 27 页 | 1.98 MB | 1 年前3
共 34 条
- 1
- 2
- 3
- 4













