《TensorFlow 2项目进阶实战》3-方案设计篇:如何设计可落地的AI解决方案• 行业背景:AI新零售是什么? • 用户需求:线下门店业绩如何提升? • 长期⽬目标:货架数字化与业务智能化 • 短期目标:自动化陈列审核和促销管理 • 方案设计:基于深度学习的检测/分类的AI流水线 • 方案交付:支持在线识别和API调用的 AI SaaS 目录 行业背景:AI新零售是什么? 人类零售演进史 ——《C时代 新零售——阿里研究院新零售研究报告》 中国零售发展处于初级阶段 产品价格指数 • 促销执行统计 客户需求:棚格图推荐设计与销量预测 如何落地项目第一期? 短期目标:自动化陈列审核和促销管理 业务落地基础:货架数字化 SKU 种类 数量 位置 品类 占比 货架 设计 场景 层数 编号 业务落地:自动化陈列审核和促销管理 陈列 必分销 新品 纯度 排面 SKU 种类 数量 位置 品类 占比 货架 设计 场景 层数 方案交付: 支持在线识别和API调用的 AI SaaS AI SaaS Showcase AI SaaS Showcase AI SaaS Showcase AI SaaS Showcase AI 通用物品识别平台架构 品 识 AI 中 台 AI 算法库 AI 核心模块 AI 行业模型 数据集 模型训练 模型管理 AutoML AI 物品库 服务管理 模型压缩 棚格图识别0 码力 | 49 页 | 12.50 MB | 1 年前3
TensorFlow on Yarn:深度学习遇上大数据没有GPUs集群资源管理和调度(内存、CPU、GPU、 端⼝),集群资源负载不均� • 训练数据⼿动分发,训练模型⼿动保存� • 进程遗留问题,需要⼿动杀死� • 缺乏作业统⼀管理,不便对作业运⾏状态跟踪� • 日志查看不⽅便� � 总结:� TensorFlow使用现状及痛点 • 集群资源的管理(目前支持CPU、内存,需要扩展GPU 资源管理)� • 作业的统⼀管理、状态跟踪� Pool)的划分� • 作业进程的资源隔离� Yarn能解决什么问题:� TensorFlow on Yarn设计 • 同时支持单机和分布式TensorFlow程序� • 支持GPU资源管理和调度� • 不再需要⼿动配置CluserSpec信息,仅需要设置work 和ps的数量� • 训练数据和训练模型基于HDFS统⼀存储� • 作业训练结束自动回收work、ps和Tensorboard进程� hadoop.yarn.api.records.Resource抽象类及其实现,增加:� � public abstract int getGpuCores();� � public abstract void setGpuCores(int gCores);� � 最终在ResourceManager端需要完成:� 1、对NodeManager GPU卡数量的统计管理� 2、调度器统计管理每个Pool的GPU设备数的分配情况�0 码力 | 32 页 | 4.06 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112代码文件(.py 格式)。 这里选择安装集成了 Python 解释器和虚拟环境等一系列辅助功能的 Anaconda 软件, 用户通过安装 Anaconda 软件,可以同时获得 Python 解释器、包管理和虚拟环境等一系列 便捷功能,何乐而不为呢。首先从 https://www.anaconda.com/distribution/#download-section 网址进入 Anaconda 下载页面,选择 28 CUDA 安装结果测试-1 图 1.29 CUDA 安装结果测试-2 1.6.3 PyTorch 安装 PyTorch 和其他的 Python 库一样,使用 Python 包管理工具 pip install 命令即可安装。 官方推荐采用 conda install 命令安装。打开 https://pytorch.org/网页,选择 Windows 操作系 统、Conda 安装方式、Python 1 手写数字图片数据集 3 目前常用的深度学习框架,如 PyTorch (Paszke, 以及其他人, 2019)、TensorFlow 等, 都可以非常方便地通过数行代码自动下载、管理和加载 MNIST 数据集,不需要开发者额 外编写代码,使用起来非常方便。这里利用 PyTorch 附带的 torchvision 库自动在线下载 MNIST 数据集,并转换为 PyTorch 的数据对象0 码力 | 439 页 | 29.91 MB | 1 年前3
AI大模型千问 qwen 中文文档下,我们将展示如何使用 vLLM 构建一个与 OpenAI API 兼容的 API 服务。 首先,确保你已经安装 vLLM>=0.3.0 : pip install vllm 运行以下代码以构建 vllm 服务。此处我们以 Qwen1.5-7B-Chat 为例: python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen1.5-7B-Chat OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( (续下页) 1.2. 快速开始 5 Qwen (接上页) api_key=openai_api_key, b base_url=openai_api_base, ) chat_response = client.chat.completions.create( model="Qwen/Qwen1.5-7B-Chat", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content":0 码力 | 56 页 | 835.78 KB | 1 年前3
动手学深度学习 v2.0效率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 5.2 参数管理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 5.2 3 提交主要更改 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764 16.6 d2l API 文档 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767 16.6 码,向读者展示如何解决实践中的问题;(4)允许我们和社区 的快速更新;(5)由一个论坛2作为补充,用于技术细节的互动讨论和回答问题。 这些目标经常是相互冲突的。公式、定理和引用最好用LaTeX来管理和布局。代码最好用Python描述。网页 原生是HTML和JavaScript的。此外,我们希望内容既可以作为可执行代码访问、作为纸质书访问,作为可下 载的PDF访问,也可以作为网站在互联网上访0 码力 | 797 页 | 29.45 MB | 1 年前3
《TensorFlow 2项目进阶实战》1-基础理论篇:TensorFlow 2设计思想核心模块概览 tf.keras:分布式和高性能的 Keras • 构建和训练模型的高层次 API • API 完全兼容原生 Keras • 支持保存和加载 TensorFlow SavedModel • 支持 Eager Execution • 支持分布式训练 tf.data:功能强大的数据管理模块 支持多种数据处理 图像解码 Shuffle py_function 重采样 支持多种数据格式 distribute:一行代码实现分布式 Training API MirroredStrategy TPUStrategy MultiWorkerMirro redStrategy CentralStorageSt rategy ParameterServer Strategy OneDeviceStrate gy Keras API Supported Experimental support support Support planned post 2.0 Support planned post 2.0 No support yet Supported Estimator API Limited Support Not supported Limited Support Limited Support Limited Support Limited Support SavedModel:生产级0 码力 | 40 页 | 9.01 MB | 1 年前3
Chatbots 中对话式交互系统的分析与应用状态追踪 (DST) inform(order_op=预订, restaurant_name=云海肴, subbranch=中关村店) request(phone, name) 理解模块 对话管理 模块 产生模块 Spoken Language Understanding (SLU) • 结构化表示自然语言的语义: • act1 (slot1=value1, slot2=value2 清晰的知识结构和边界 • 非标准化服务,信息不对称 • 能够通过数据积累提升服务质量 • 能够建立知识和技术壁垒 • 对话作为粘合剂 • 用户画像,推荐系统,营销转化 爱因互动:API in, API out 各路API,快速对接 爱因互动合作示例 • 在线订餐位 • 合作方向:售前、售后;金融、保险 启示 • 如果无法理解问题,那就尽可能给出正确答案 • 焦点词(Focus) •0 码力 | 39 页 | 2.24 MB | 1 年前3
阿里云上深度学习建模实践-程孟力证件扫描 活体检测 人脸比对 • 卡证OCR • 人脸检测 • 活体检测 •人脸比对 Mobile SDK API + customer 示例: e-Know Your Customer eKYC eKYC Server eKYC SDK/API 多语言、国际化 多种证件版式 准确率领先同类产品 集成方便 标准化: Standard Solutions 交互式建模(DSW) • JupyterLab、WebIDE • 多框架兼容 • 可视化+tensorboard • 图像、视频、文本、 语音标注 • 多场景模板:物体检 测、语音识别 • 数据集管理 • 主动学习 • 智能标注 itags AI SaaS服务(OCR、语音识别、推荐系统、金融风控、疾病预测等) Infrastructure PAI平台(Platform of Artificial0 码力 | 40 页 | 8.51 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波PS:BSP/SSP/ASP多种通信模式支持 • MPI&RingAllreduce:Horovod,使用 MPI替换grpc,同步通信模式;带宽优化,增加延时; • PS&MPI:DistributionStrategy API,统一分布式语义,解耦分布式架构与模型训练框架 • 使用FP16通信,使用FP32做计算,带宽压力降低一倍 • IO优化 • 多线程样本并发读取,样本读取与计算PIPELINE,实现计算与IO的overlap 深度学习-深度学习模型训练 • 分布式模型推理框架:WeiServing 异构CPU集群 kubernetes/ol-submit RPC服务框架 LR/GBDT DNN/DeepFM/W&D 负载均衡/统一版本管理/动态加载/批量化机制 特征映射 Embedding 数据处理 异构GPU集群 CNN 业务应用 模型服务 框架 排序模型服务 多媒体分析服务 自然语言分析服务 集群调度层 核心架构层0 码力 | 36 页 | 16.69 MB | 1 年前3
PyTorch OpenVINO 开发实战系列教程第一篇同时全面支持 Android 与 iOS 移动端部署。 在版本发布管理方面,Pytorch 分为三种不同的版本分别是稳 定版本 (Stable Release)、Beta 版本、原型版本(Prototype)。 其中稳定版本长期支持维护没有明显的性能问题与缺陷,理论 上支持向后兼容的版本;Beta 版本是基于用户反馈的改动版 本,可能有 API/SDK 函数改动,性能有进一步需要提升的空间; 原型版本是新功能还不可以,需要开发不能通过0 码力 | 13 页 | 5.99 MB | 1 年前3
共 36 条
- 1
- 2
- 3
- 4













