积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(17)机器学习(17)

语言

全部英语(12)中文(简体)(5)

格式

全部PDF文档 PDF(17)
 
本次搜索耗时 0.031 秒,为您找到相关结果约 17 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    would also support new offline applications of these models. As an example, the Google Translate application supports offline mode which improves the user experience in low or no-connectivity areas. This 1-8), which tries to compress the weight matrix of a layer, by reducing its precision (eg., from 32-bit floating point values to 8-bit unsigned / signed integers). Quantization can generally be applied
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    Let’s dig deeper into its mechanics using an example. Let’s assume we have a variable x which takes a 32-bit floating point value in the range [-10.0, 10.0]. We need to transmit a collection (vector) of these with a 32-bit for storing x, let us assume we have a b-bit unsigned integer for storing x. A b-bit unsigned integer will have 2b possible distinct values, ranging from 0 to 2b - 1. To go from a 32-bit floating and back again, we need a mapping from one side to the other. It is easy to learn a mapping from 32-bit to b-bit values. We would also want to keep a weaker relative ordering of the values between the
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    operators: https://pytorch.org/docs/stable/tensors.html Tensors – Data Type Data type dtype tensor 32-bit floating point torch.float torch.FloatTensor 64-bit integer (signed) torch.long torch.LongTensor
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    not forward- compatible with CUDA 12.1. For a complete list of supported drivers, see the CUDA Application Compatibility topic. For more information, see CUDA Compatibility and Upgrades. GPU Requirements not forward- compatible with CUDA 12.1. For a complete list of supported drivers, see the CUDA Application Compatibility topic. For more information, see CUDA Compatibility and Upgrades. GPU Requirements not forward- compatible with CUDA 12.1. For a complete list of supported drivers, see the CUDA Application Compatibility topic. For more information, see CUDA Compatibility and Upgrades. GPU Requirements
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 keras tutorial

    operations in input layer. It is used to convert positive into dense vectors of fixed size. Its main application is in text analysis. The signature of the Embedding layer function and its arguments with default Our MyCustomLayer is added to the model using 32 units and (16,) as input shape Running the application will print the model summary as below: Model: "sequential_1" ______________________________ verbose=1, validation_data=(x_test, y_test)) Executing the application will give the below content as output: Train on 60000 samples, validate on 10000 samples Epoch
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    chat interface 来与 Qwen 进行交流: curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" - �→d '{ "model": "Qwen/Qwen1.5-7B-Chat", "messages": [ {"role": "system", "content": "You --model Qwen/Qwen1.5-7B-Chat-AWQ curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" - �→d '{ "model": "Qwen/Qwen1.5-7B-Chat-AWQ", "messages": [ {"role": "system", "content": Qwen/Qwen1.5-7B-Chat-GPTQ-Int8 curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" - �→d '{ "model": "Qwen/Qwen1.5-7B-Chat-GPTQ-Int8", "messages": [ {"role": "system", "content":
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    natural language Mobile Hub Custom Connector 2: Invoke a SaaS application or an existing business application Business Application Firewall User Input 应用案例: Capital One “A highly scalable solution
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    edge devices. Let’s say you want to design a mobile application to highlight pets in a picture. A DSC model is a perfect choice for such an application because it has a smaller footprint than a regular convolution segmentation mask over an object in the input sample. This model will be used within a mobile application. Mobile devices are resource constrained. Let’s see if we can reduce the model footprint without model to produce a mask over a pet in an image. This model will be deployed with a pet filter application for mobile devices which would let you replace one pet with another. We will show you the first
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    experts. Imagine that we are developing an application to identify a flower from its picture. We have access to a flowers dataset (oxford_flowers102). As an application developer, with no experience with ML ML, we would like a model trained on the flowers dataset to integrate into our application. The goal of AutoML is to produce such a model.
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    downstream application (which is very reasonable), we only need to achieve that saving across 100 applications before it becomes profitable to pre-train BERT-Base rather than train each application from scratch
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterIntroductionCompressionTechniquesMachinePytorchTutorialPyTorchReleaseNoteskerastutorialAI模型千问qwen中文文档亚马亚马逊AWSAIServicesOverviewArchitecturesAutomationAdvancedTechnicalReview
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩