积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(10)机器学习(10)

语言

全部英语(7)中文(简体)(3)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.076 秒,为您找到相关结果约 10 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Keras: 基于 Python 的深度学习库

    fit(self, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None fit(self, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None TensorFlow 时,自动推理得到)。 5.2.10 ActivityRegularization [source] keras.layers.ActivityRegularization(l1=0.0, l2=0.0) 网络层,对基于代价函数的输入活动应用一个更新。 参数 • l1: L1 正则化因子 (正数浮点型)。 关于 KERAS 网络层 65 • l2: L2 正则化因子 (正数浮点型)。
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    sparsity_rate) # Set the respective indices to zero. w_1d[w_1d_sorted_indices[:num_elements_to_zero]] = 0.0 w = np.reshape(w_1d, w.shape) return w def compress(w): # Compress the weights matrix using gzip format(block.name, sparsity, total)) Output Block: conv_block_0 Sparsity: 0.0% Total Weights: 864 Block: conv_block_1 Sparsity: 0.0% Total Weights: 18432 Block: conv_block_2 Sparsity: 50.0% Total Weights: conv_transpose_block_13 Sparsity: 0.0% Total Weights: 4718592 Block: conv_transpose_block_14 Sparsity: 0.0% Total Weights: 1179648 Block: conv_transpose_block_15 Sparsity: 0.0% Total Weights: 294912 Block:
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    6.jpeg Solution: First, we will interpret the image in the form of a 2D matrix having values in [0.0, 1.0]. %matplotlib inline import matplotlib.pyplot as plt import matplotlib.image as mpimg img dequantize() methods from the previous exercises. However, in this case, the image data values lie in range [0.0, 1.0]. Take a look at the simulate_transmission() method below which uses this range to call quantize() def simulate_transmission(img, b): transmitted_image = quantize(img, 0.0, 1.0, b) decoded_image = dequantize(transmitted_image, 0.0, 1.0, b) plt.axis('off') plt.imshow(decoded_image) Figure 2-7 shows
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 keras tutorial

    import Activation, Dense from keras import initializers my_init = initializers.RandomNormal(mean=0.0, stddev=0.05, seed=None) model.add(Dense(512, activation='relu', input_shape=(784,), kernel_initializer=my_init)) import Activation, Dense from keras import initializers my_init = initializers.TruncatedNormal(mean=0.0, stddev=0.05, seed=None) Keras 30 model.add(Dense(512, activation='relu', input_shape=(784 Activation, Dense from keras import constraints my_constrain = constraints.MinMaxNorm(min_value=0.0, max_value=1.0, rate=1.0, axis=0) model = Sequential() model.add(Dense(512, activation='relu', input_shape=(784
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    and represent each animal using two features, say cute and dangerous. We can assign values between 0.0 and 1.0 to these two features for different animals. The higher the value, the more that particular the various animals, using two features (cute and dangerous), each of which can take a value between 0.0 and 1.0. We manually picked these values for illustration. Going through table 4-1, cat and dog have closer to 1.0), and the output probabilities of a few other random classes (which should be close to 0.0). 8 Solving Skipgram is going to be identical, and is left as an exercise to the reader! We always
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    def __init__(self, n): self.data = [0.0] * n def add(self, *args): self.data = [a + float(b) for a, b in zip(self.data, args)] def reset(self): self.data = [0.0] * len(self.data) def __getitem__(self 通过 图6.2.1的输入张量X和卷积核张量K,我们来验证上述二维互相关运算的输出。 X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]) K = torch.tensor([[0.0, 1.0], [2.0, 3.0]]) corr2d(X, K) tensor([[19., 25.], [37., 43 1中的值相对应的输入张量X和核张量K,以验证互相关运算的输出。 X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]) K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    without the prior written permission of the publisher. Art. No 0 ISBN 000–00–0000–00–0 Edition 0.0 Cover design by Dezeming Family Published by Dezeming Printed in China 目录 0.1 本书前言 5 1 准备章节 ) transf orm 是对数据的转换,ToTensor() 函数将 PIL 图像或者 NumPy 的 ndarray 转换为 FloatTensor 类型的,并且把图像的每个像素值压缩到 [0.0,1.0] 之间。 target_transf orm 10 1.2. 导入样本数据 是标签的转换,分类中我们需要将标签表示为向量的形式,例如一共有三类,则表示为: [1 0 0] (1.2
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) # 绘制权值矩阵范围 surf = ax.plot_surface(X # 使用改进的策略与环境交互 s_prime, r, done, info = env.step(a) done_mask = 0.0 if done else 1.0 # 结束标志掩码 # 保存 5 元组 memory.put((s, a, r / 100.0, s_prime worker_idx = idx # 线程 id self.env = gym.make('CartPole-v0').unwrapped self.ep_loss = 0.0 在线程运行阶段,每个线程最多与环境交互 400 个回合,在回合开始,利用 client 网 络采样动作与环境进行交互,并保存至 Memory 对象。在回合结束,训练 Actor 网络和 Critic
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    probabilistic dropping: Here is a bernoulli random variable, which is 1.0 with a probability and, 0.0 with a probability . Thus, during training the -th block will act as an identity function with probability
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    produced by the teacher model. This might be helpful when the model assigns probabilities very close to 0.0 or 1.0, which makes it almost identical to the regular ground-truth labels. In this case, we use the
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
共 10 条
  • 1
前往
页
相关搜索词
Keras基于Python深度学习EfficientDeepLearningBookEDLChapterAdvancedCompressionTechniqueskerastutorialArchitectures动手v2连接神经网络神经网神经网络实战pytorchPyTorch深度学习TechnicalReview
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩