微博在线机器学习和深度学习实践-黄波Checkpoint 节点异常修复 3 在线机器学习-实时样本生成 • 在线机器学习模型训练:Flink/Blink+WeiPS 样本生成和特征处理 1.配置化 2.多标签样本 3.支持高维HASH 训练预处理 1.标签选择 2.标签UDF 3.样本过滤 4.特征过滤 模型训练 1.支持回归和分类 2.支持LR、FM、 DeepFM等模型 3.支持SGD 、 FTRL 优化算法选择 • FTRL:调节学习率,突出低频特征,非batch优化 • Adagrad : 调节学习率,突出低频特征,实现简单 • SGD: 参数少,效率高,固定学习率 • ID特征处理 • Hash:BKDRhash/CityHash,ID高维度稀疏+实时 3 在线机器学习-实时模型训练 serving serving server server server worker Model 本探测与保存,模型稀疏化分片存储 • 冷备容灾:基于checkpoint机制(Local模式&Remote模式),实现参数服务的高可用,支持基于模型的异构集群迁移,支持集 群扩缩容 • 性能优化 • 通信优化:数据请求(PULL&PUSH)聚合,同模型多矩阵并发,锁粒度优化,性能提升5-10倍 • 缓存优化:使用堆外内存与LRU过期机制,解决GC引起的性能损耗,性能提升3-5倍 • 分0 码力 | 36 页 | 16.69 MB | 1 年前3
如何利用深度学习提高高精地图生产的自动化率-邹亮0 码力 | 34 页 | 56.04 MB | 1 年前3
动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 4.5.1 高维线性回归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 4.5.2 从零开始实现 预先设想假设的依赖。数据集的由小变大为现代深度学习的成功奠定基础。在没有大数据集的情况下,许多 令人兴奋的深度学习模型黯然失色。就算一些深度学习模型在小数据集上能够工作,但其效能并不比传统方 法高。 请注意,仅仅拥有海量的数据是不够的,我们还需要正确的数据。如果数据中充满了错误,或者如果数据的 特征不能预测任务目标,那么模型很可能无效。有一句古语很好地反映了这个现象:“输入的是垃圾,输出的 backward() x.grad tensor([1., 1., 1., 1.]) 2.5.2 非标量变量的反向传播 当y不是标量时,向量y关于向量x的导数的最自然解释是一个矩阵。对于高阶和高维的y和x,求导的结果可以 是一个高阶张量。 然而,虽然这些更奇特的对象确实出现在高级机器学习中(包括深度学习中),但当调用向量的反向计算时, 我们通常会试图计算一批训练样本中每个组成部分的损失0 码力 | 797 页 | 29.45 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112由华人陈天奇和李沐等人开发,是亚马逊公司的官方深度学习框架。采用了 命令式编程和符号式编程混合方式,灵活性高,运行速度快,文档和案例也较为丰 富。 ❑ Keras 是一个基于 Theano 和 TensorFlow 等框架提供的底层运算而实现的高层框架, 提供了大量快速训练、测试网络的高层接口。对于常见应用来说,使用 Keras 开发效 率非常高。但是由于没有底层实现,需要对底层框架进行抽象,运行效率不高,灵活 性一般。 预览版202112 1.5 深度学习框架 15 程,也称为动态图模式。PyTorch 是采用动态图模式的深度学习框架,开发效率高,调试 方便,所见即所得。一般认为,动态图模式开发效率高,但是运行效率可能不如静态图模 式,更适合算法设计和开发;静态图模式运行效率高,更适合算法部署。然而并不全是如 此,在很多任务上,PyTorch 的速度都优于 TensorFlow,而且 PyTorch 在工业部署上也有成 ∗,就可以从(部分)实数空间中随机采样?和?,并计算出?和?对应模型的误差值ℒ, 然后从测试过的{ℒ}集合中挑出最好的ℒ∗,它所对应的?和?就可以近似作为最优?∗和?∗。 这种算法固然简单直接,但是面对大规模、高维度数据的优化问题时计算效率极低, 基本不可行。梯度下降算法(Gradient Descent)是神经网络训练中最常用的优化算法,配合 强大的图形处理芯片 GPU(Graphics Processing0 码力 | 439 页 | 29.91 MB | 1 年前3
QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒索 l处理数万到数十万路,城市范围级别监控、门禁摄 像头数据 l10-100 Billion级别深度学习特征检索 - PB以上级别数据库存储 - 100PB级别抓拍图片存储 - 每秒万次并发检索请求 l大规模推广应用 l某种程度上说,城市内所有市民都是系统的用户 深度学习算法发展为平台系统赋能 首次超过人眼 2014 2015 98.52% 97.35% 97.45% 人眼 CPU manager Device plugin 1.9 volume-awared scheduling Go语言在高性能系统中的实践经验 • 为什么用Go - 比起C++,更易于实践各种并发模式 - 比起Java,更加简洁,更易于与C/C++交互 - 比起脚本语言,类型和内存安全,保证重构效率与产品质量 - 完善的配套工具,如go test, gofmt, go lint, race-detector0 码力 | 23 页 | 9.26 MB | 1 年前3
机器学习课程-温州大学-05机器学习-机器学习实践,它可以改善或者减少过拟合问题。 4.集成学习方法 集成学习是把多个模型集成在一起,来降低单一模型的过拟合风险。 21 通过这张图可以看出, 各种不同算法在输入的 数据量达到一定级数后 ,都有相近的高准确度 。于是诞生了机器学习 界的名言: 成功的机器学习应 用不是拥有最好的 算法,而是拥有最 多的数据! 数据决定一切 数据大小 准 确 率 22 欠拟合的处理 1.添加新特征 当特 也就是离其期望值的距离。方差越大,数 据的分布越分散,如右图右列所示。 偏差Bias: 描述的是预测值(估计值)的期望与真实 值之间的差距。偏差越大,越偏离真实数 据,如右图第二行所示。 低方差 高方差 高 偏 差 低 偏 差 29 偏差和方差 总体误差 方差 偏差 2 最 优 模 型 复 杂 度 模型复杂度 误 差 方差、偏差和模型复杂度 右图是模型复杂度与误差的关系,一 Good fit Overfitting 31 偏差和方差 1. 获得更多的训练实例——解决高方差 2. 尝试减少特征的数量——解决高方差 3. 尝试获得更多的特征——解决高偏差 4. 尝试增加多项式特征——解决高偏差 5. 尝试减少正则化程度λ——解决高偏差 6. 尝试增加正则化程度λ——解决高方差 x1 x2 32 参考文献 [1] Andrew Ng. Machine Learning[EB/OL]0 码力 | 33 页 | 2.14 MB | 1 年前3
机器学习课程-温州大学-05深度学习-深度学习实践,它可以改善或者减少过拟合问题。 4.集成学习方法 集成学习是把多个模型集成在一起,来降低单一模型的过拟合风险。 9 通过这张图可以看出, 各种不同算法在输入的 数据量达到一定级数后 ,都有相近的高准确度 。于是诞生了机器学习 界的名言: 成功的机器学习应 用不是拥有最好的 算法,而是拥有最 多的数据! 数据决定一切 数据大小 准 确 率 10 欠拟合的处理 1.添加新特征 当特 Good fit Overfitting 17 偏差和方差 1. 获得更多的训练实例——解决高方差 2. 尝试减少特征的数量——解决高方差 3. 尝试获得更多的特征——解决高偏差 4. 尝试增加多项式特征——解决高偏差 5. 尝试减少正则化程度λ——解决高偏差 6. 尝试增加正则化程度λ——解决高方差 x1 x2 18 参考文献 1. IAN GOODFELLOW等,《深度学习》,人民邮电出版社,20170 码力 | 19 页 | 1.09 MB | 1 年前3
阿里云上深度学习建模实践-程孟力标注速度慢 ✗ 标注成本高 ✗ 样本分布不均匀 ✗ 隐私保护 • 多个环节 • 多种模型 ✗ 海量参数 ✗ 海量数据 深度学习应用主要的挑战: 3.工程优化复 杂 4.数据获取困 难 挑战 深度模型是非线性的: • 参数很多 • 参数敏感 • 不同场景的数据上差异大 手里面只有5张图片, 怎么搞出来一个效果还 不错的模型? ✗ 标注速度慢 ✗ 标注成本高 ✗ 样本分布不均匀 ✗ 模型效果优 化困难 1.方案复杂 Data Model Compute Platform 要求: 准确: 低噪声 全面: 同分布 模型选型: 容量大 计算量小 训练推理: 高qps, 低rt 支持超大模型 性价比 流程长、环节多: 推荐场景: 召回 + 粗排 + 精排 + 多样性/冷启动 实人认证: 卡证识别 + 人脸检测 + 活体检测 + 人脸 参数很多 • 参数敏感 • 不同场景的数据上差异大 从FM到DeepFM rt 增 加了10倍怎么优化? 手里面只有5张图片, 怎么搞出来一个效果还 不错的模型? ✗ 标注速度慢 ✗ 标注成本高 ✗ 样本分布不均匀 ✗ 隐私保护 • 多个环节 • 多种模型 ✗ 海量参数 ✗ 海量数据 深度学习应用主要的挑战: 2.模型效果优 化困难 1.方案复杂 学习率: 1e-3, 1e-40 码力 | 40 页 | 8.51 MB | 1 年前3
Qcon北京2018-《文本智能处理的深度学习技术》-陈运文达观数据 陈运文 文本智能处理的深度学习技术 达观数据CEO 陈运文 博士 • 中 国 计 算 机 学 会 高 级 会 员 , A C M 和 I E E E 学 会 会 员 , 复 旦 大 学 计 算 机 博 士 和 杰 出 毕 业 生 • 原 腾 讯 文 学 高 级 总 监 、 盛 大 文 学 首 席 数 据 官 、 百 度 核 心 技 术 工 程 师 • 三 十 项 国 家 技 术 0, 0, 0, 0, 0, … ] [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, … ] one-hot表示 高维,稀疏,正交,无法计算语义相关性 字词表示 威海市 [ -2.0795249939, 1.4055569172, 1.9540510178, … -0.651816964, -6.1333961487 NER 分词 情感分析 文本分类 机器翻译 … 文本分类 传统机器学习 • 选择分类器(朴素贝叶斯,SVM,KNN,LR,决 策树) • 特征工程构造特征 • 不同领域定制优化成本高 • 常需要分类算法融合提升效果 深度学习(CNN,RNN等) • 端到端,无需大量特征工程 • 框架通用性好,满足多领域需求 • 可以使用非监督语料训练字词向量提升效果 文本分类 CNN0 码力 | 46 页 | 25.61 MB | 1 年前3
超大规模深度学习在美团的应用-余建平模型并行调超参 grid search random search PS的多模型训练 • 提高内存使用效率 model group内共享特征key的存储 • 超大规模模型 -> 高扇出的分布式PS • 长尾效应:单个分片的抖动(网络、CPU)对请求影响变大 单分片4个9的可用性 16分片整体可用性:99.99% ^ 16 = 99.84% 64分片整体可用性:99 64分片整体可用性:99.99% ^ 64 = 99.36% 128分片整体可用性:99.99% ^ 128 = 98.72% • Backup Request Jeff Dean在解决BigTable高扇出时提出的方案 PS的长尾效应 Backup Request 副本1 副本2 PS Shard 1 副本1 副本2 PS Shard 2 副本1 副本2 PS Shard N Predictor 无效信息多 样本分布 • 在线、近线、离线全流程解决方案 召回模型通路 • 粗排模型 • 精排模型 排序模型解决方案 • 粗排阶段的特点 候选集大,通常在千到万级别 线上的响应时间要求高,通常在几到十几ms • 简单模型 计算耗时短:线性模型LR、树模型 模型表达能力不足,效果一般 • 复杂模型 DNN模型解决耗时是关键,利用预计算解决耗时问题 效果保障:0 码力 | 41 页 | 5.96 MB | 1 年前3
共 39 条
- 1
- 2
- 3
- 4













