积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(56)机器学习(56)

语言

全部中文(简体)(55)英语(1)

格式

全部PDF文档 PDF(56)
 
本次搜索耗时 0.071 秒,为您找到相关结果约 56 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-10深度学习-人脸识别与风格迁移

    1 2023年04月 深度学习-人脸识别和风格迁移 黄海广 副教授 2 01 人脸识别概述 02 神经风格迁移 本章目录 3 01 人脸识别概述 1.人脸识别概述 02 神经风格迁移 4 1.人脸识别概述 人脸验证(face verification) 人脸识别(face recognition) • 有一个K个人的人脸数据库 • 获取输入图像 01 人脸识别概述 2.神经风格迁移 02 神经风格迁移 20 2.神经风格迁移 21 2.神经风格迁移 22 2.神经风格迁移 深度学习=表示学习+浅层学习 23 多层卷积能抽取复杂特征 浅层学到的特征为简单的边缘、角 点、纹理、几何形状、表面等 深层学到的特征则更为复杂抽象,为狗 、人脸、键盘等等 24 2.神经风格迁移 ?(?) = ??content( content(?, ?) + ??style(?, ?) 两个超参数?和?来确定内容代价和风格代价 给你一个内容图像?,给定一个风格图 片?,而你的目标是生成一个新图片? 25 2.神经风格迁移 • 随机初始化生成图像?,如100×100×3,500×500×3,又或者是任何你想要的尺寸。 • 然后使用代价函数?(?),使用梯度下降的方法将其最小化,更新?: = ? − ? ?? ?(?)。在
    0 码力 | 34 页 | 2.49 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    读取数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.2.3 初始化模型参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.4 定义模型 . . . . . 定义模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.3.4 初始化模型参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.3.5 定义损失函数 . . . 网络架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.4.3 全连接层的参数开销 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.4.4 softmax运算 . . .
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    机器学习的分类 有监督学习 有监督学习的数据集包含了样本?与样本的标签?,算法模型需要学习到 映射关系??: ? → ?,其中??代表模型函数,?为模型的参数。在训练时,通过计算模型的预 测值??(?)与真实标签?之间的误差来优化网络参数?,使得网络下一次能够预测更精准。常 见的有监督学习有线性回归、逻辑回归、支持向量机、随机森林等。 无监督学习 收集带标签的数据往往代价较为昂贵,对于只有样本 身作为 监督信号,即模型需要学习的映射为??: ? → ?,称为自监督学习(Self-supervised Learning)。在训练时,通过计算模型的预测值??(?)与自身?之间的误差来优化网络参数?。 常见的无监督学习算法有自编码器、生成对抗网络等。 强化学习 也称为增强学习,通过与环境进行交互来学习解决问题的策略的一类算法。 与有监督学习、无监督学习不同,强化学习问题并没有明确的“正确的”动作监督信号, 年,美国心理学家 Frank Rosenblatt 提出了第一个可以自动学习权重的神经元模 型,称为感知机(Perceptron),如图 1.5 所示,输出值?与真实值 之间的误差用于调整神经 元的权重参数{? , ? , … , ? }。Frank Rosenblatt 随后基于“Mark 1 感知机”硬件实现感知 机模型,如图 1.6、图 1.7 所示,输入为 400 个单元的图像传感器,输出为 8
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    8.1 评价函数的用法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.1.1 参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.1.2 返回值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 9.2 Keras 优化器的公共参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 9.2.1 SGD [source] . . . . 传递一个 input_shape 参数给第一层。它是一个表示尺寸的元组 (一个整数或 None 的元 组,其中 None 表示可能为任何正整数)。在 input_shape 中不包含数据的 batch 大小。 • 某些 2D 层,例如 Dense,支持通过参数 input_dim 指定输入尺寸,某些 3D 时序层支持 input_dim 和 input_length 参数。 • 如果你需要为你的输入指定一个固定的
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-07深度学习-卷积神经网络

    含有特定目标的 部分 高级处理 验证得到的 数据是否匹 配前提要求 ,估测特定 系数,对 目 标进行分类 •图像分类 •目标检测 •图像分割 •目标跟踪 •OCR文字识别 •图像滤波与降噪 •图像增强 •风格迁移 •三维重建 •图像检索 •GAN 5 图像分类 6 目标检测 目标检测结合了目标分类和定位两个任务。 one-stage(YOLO,YOLO9000,YOLOV3,YOLOV4, YOLOV5 MAXPOOL 10x10x16 MAXPOOL 5x5x16 POOL2 F C F C FC3 FC4 S O F T M A X 120 84 10 激活维度 激活尺寸 参数个数 输入 (32,32,3) 3072 0 CONV1 (f=5, s=1,6filter) (28,28,6) 6272 456=(3 x 5x5+1) x6 POOL1 (14,14,6) (120,1) 120 10164=120x84+84 FC4 (84,1) 84 850=84 x10+10 Softmax (10,1) 10 0 F C 400 26 卷积神经网络作用 参数共享 10 10 10 10 10 10 10 10 10 10 10 10 10 0 10 0 10 0 10 0 10 0 10 0 0 0 0 0 0 0 0 0
    0 码力 | 29 页 | 3.14 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    词语或语段,让神经网络自主学习复原被 遮挡部分,从而拥有“猜测”缺失内容的 能力,产出预训练模型。再通过大规模预 训练模型理解上文或给定条件,从概率层 面推测最符合要求的输出结果。其本质是 借助超大规模的训练参数猜测上下文的过 程 文本风格 主流思路是分离文本属性及文本内容 迁移 隐式方法即使用某类无监督学习学习或强化学 习模式将文本属性及内容自动分离,常见的有 生成对抗方式,即通过GAN实现目标属性和 文本量性完全由不同的编码控制的状态。 习在不需要明确监督的情 况下执行数量惊人的任务 ✓ 在GPT-2阶段,OpenAI去掉了GPT-1阶段的有监督微调(fine-tuning),成为无监督模型。 ✓ 大模型GPT-2是一个1.5B参数的Transformer,在其相关论文中它在8个测试语言建模数据集中的7个数据集上实现了当时最先进的结果。 模型中,Transfomer堆叠至48层。GPT-2的数据集增加到8 million的网页、大小40GB的文本。 品区分开来 ◼ GPT-3对GPT-2追求无监督与零次学习的特征进行了改进 ◼ GPT-3利用了过滤前45TB的压缩文本,在诸多NLP数据集中实现了强大性能 ✓ GPT-3是一个具有1750亿个参数的自回归语言模型,比之前的任何非稀疏语言模型多10倍。对于所有任务(在few-shot设置下测试其 性能),GPT-3都是在没有任何梯度更新或微调的情况下应用的,仅通过与模型的文本交互来指定任务和few-shot演示。
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    小时,就可以用 pytroch 搭建一个有模有样的神经网络系统了。 几年前,我在 Mooc 的《人工智能实战——Tensorflow 笔记》这门课上入门了 tensorflow,我 很喜欢这种讲授的风格。尽管这门课讲到后面,代码量也因为过于巨大从而导致上课节奏不好控 制,但它的目的达到了——学习者可以快速入门 tensorflow。而后来,因为很多项目的源码都是基 于 pytorch 的,我也开始转战 gray ” ) plt . show () datasets 是 torchvision 的对象,它返回的数据就是 pytorch 的 Dataset 类型的。 参数 transf orm 表示导出的数据应该怎么转换,我们还可以使用参数 target_transf orm 表 示导出的数据标签应该怎么转换。 注意显示时我们调用了 squeeze() 函数,这是因为原来的数据维度是 (1,28,28) 初始化网络权重-方法二和三 17 本章我们的目标是把神经网络做的更完善。 3.1 模型的加载与保存 有时候我们希望将训练了一定轮数的模型参数保存起来,这个时候我们就需要保存和恢复模 型了。 model.state_dict() 函数可以得到模型的状态字典,里面包含了模型的参数权重与 bias 等信 息,我们可以用下面的代码来保存和恢复模型: # 保 存 模 型 torch . save ( model
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    含有特定目标的 部分 高级处理 验证得到的 数据是否匹 配前提要求 ,估测特定 系数,对 目 标进行分类 •图像分类 •目标检测 •图像分割 •目标跟踪 •OCR文字识别 •图像滤波与降噪 •图像增强 •风格迁移 •三维重建 •图像检索 •GAN 12 深度学习-CV典型应用案例 翻译 传统翻译采用人工查词的方式,不但耗时长 ,而且错误率高。图像识别技术(OCR)的出 现大大提升了翻译的效率和准确度,用户通 ? = 0,1, ⋯ , ? (3) Poisson分布:?(?): ?(? = ?) = ?? ?! ?−?, ? > 0, ? = 0,1,2 ⋯ Poisson分布的期望和方差都等于参数? 49 概率论与数理统计-常见分布 (4) 均匀分布?(?, ?):?(?) = ൝ 1 ?−? , ? < ? < ? 0, (5) 正态分布:?(?, ?2): ?(?) = 1 iloc[row_loc, col_loc] 通过位置(自然数)选取行/列 66 Python模块-Pandas ⚫ 数据合并 pd.merge(left, right) 类数 据库的数据融合操作. 参数:how,融合方式,包括左连接、右连接、内连 接(默认)和外连接;on,连接键;left_on,左 键;right_on,右键;left_index,是否将left 行索引作 为左键;right_index,是否将right行
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 谭国富:深度学习在图像审核的应用

    2016 深度学习全面爆发 2016 - 讯飞,搜 狗,阿里 演示了实 时语音识 别翻译 2016 优图实时 美颜美妆 在众多直 播,小视 频场景大 量应用 深度学习实现 的图像风格化, 带动时光相册 等一大批风格 化软件流行 SACC2017 深度学习 – 相对于传统机器学习方法的突破 图像表示:Gabor, SIFT, HOG, LBP, POEM, LGBP, LPQ 图像集表示:Manifold
    0 码力 | 32 页 | 5.17 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 44. 数据增强

    Rotate Rotate Scale Crop Part Noise ▪ Data argumentation will help ▪ But not too much 下一课时 艺术风格迁移 Thank You.
    0 码力 | 18 页 | 1.56 MB | 1 年前
    3
共 56 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
机器学习课程温州大学10深度人脸识别人脸识别风格迁移动手v2PyTorch深度学习Keras基于Python07卷积神经网络神经网神经网络12自然语言自然语言处理嵌入连接实战pytorch01引言国富图像审核应用入门44数据增强
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩