积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(7)机器学习(7)

语言

全部中文(简体)(6)英语(1)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.059 秒,为您找到相关结果约 7 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    Reader Learner Worker 返回参数 Request Handler Parameter Server 更新参数 � 异步参数处理流⽔线 参数 预准备 Batch⼊队列 Batch⼊队列 � 效果: � 在不影响训练效果的情况下,降低参数准备与更新耗时,提 ⾼训练速度。训练耗时下降超50% � 异步storage线程,⽀持基于冷热数据的多级存储。内存消 耗下降30%-70%
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    。可选参数 Sequence:如果未指定,将使用 len(generator) 作为步数。 • class_weight: 将类别映射为权重的字典。 • max_queue_size: 生成器队列的最大尺寸。 • workers: 使用的最大进程数量。 • use_multiprocessing: 如果 True,则使用基于进程的多线程。请注意,因为此实现依赖于多 进程,所以不应将不可 在停止之前,来自 generator 的总步数 (样本批次)。可选参数 Sequence:如果未指 定,将使用 len(generator) 作为步数。 • max_queue_size: 生成器队列的最大尺寸。 • workers: 使用的最大进程数量。 • use_multiprocessing: 如果 True,则使用基于进程的多线程。请注意,因为此实现依赖于多 进程,所以不应将不可 在停止之前,来自 generator 的总步数 (样本批次)。可选参数 Sequence:如果未指 定,将使用 len(generator) 作为步数。 • max_queue_size: 生成器队列的最大尺寸。 • workers: 使用的最大进程数量。 模型 48 • use_multiprocessing: 如果 True,则使用基于进程的多线程。请注意,因为此实现依赖于多 进程,
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 经典算法与人工智能在外卖物流调度中的应用

    • 实时获取调度监控指标 • 及时预警引入人工干预 • 精准模拟实际订单分布情况 • 有效评估调度算法的改进效果 • 合理划分物流范围 • 节省调度运力,提升商户配送能力 • 云端虚拟队列,实现调度指派 • 提升物流效率 仿真系统 实时监控 时光机 寻宝系统 1 2 3 4 5 时光机系统—历史数据可视化分析 真实再现调度场景细节 回溯定位异常调度原因,诊断调试算法
    0 码力 | 28 页 | 6.86 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    策略[类目打散、流量控制、…] 实时采集后端日志 PAI-REC 配置中心 AB实验 实验工具 拉取配置 监控报警 Prometheus Grafana 读取metric 消息队列(datahub/kafka) PAI-REC平台 自动化降级 负载均衡 灰度发布 超时控制 平台支持 日志SLS 在线存储 Hologres/OTS BE Redis 读取数据
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    max_new_tokens=512, streamer=streamer, ) 除了使用 TextStreamer 之外,我们还可以使用 TextIteratorStreamer ,它将可打印的文本存储在一 个队列中,以便下游应用程序作为迭代器来使用: # Repeat the code above before model.generate() # Starting here, we add streamer
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    device='cuda:0') 图12.2.2: 后端跟踪计算图中各个步骤之间的依赖关系 上面的代码片段在 图12.2.2中进行了说明。每当Python前端线程执行前三条语句中的一条语句时,它只是将 任务返回到后端队列。当最后一个语句的结果需要被打印出来时,Python前端线程将等待C++后端线程完成 510 12. 计算性能 变量z的结果计算。这种设计的一个好处是Python前端线程不需要执行实际的计算。因此,不管Python的性 前端和后端的交互 12.2.2 障碍器与阻塞器 12.2.3 改进计算 Python前端线程和C++后端线程之间的简化交互可以概括如下: 1. 前端命令后端将计算任务y = x + 1插入队列; 2. 然后后端从队列接收计算任务并执行; 3. 然后后端将计算结果返回到前端。 假设这三个阶段的持续时间分别为t1, t2, t3。如果不使用异步编程,执行10000次计算所需的总时间约 为10000(t1 > 9999t1)。 小结 • 深度学习框架可以将Python前端的控制与后端的执行解耦,使得命令可以快速地异步插入后端、并行 执行。 • 异步产生了一个相当灵活的前端,但请注意:过度填充任务队列可能会导致内存消耗过多。建议对每个 小批量进行同步,以保持前端和后端大致同步。 • 芯片供应商提供了复杂的性能分析工具,以获得对深度学习效率更精确的洞察。 12.2. 异步计算 511 练习
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    ?′)数据。经验缓冲池的代码实现如下: class ReplayBuffer(): # 经验回放池 def __init__(self): # 双向队列 self.buffer = collections.deque(maxlen=buffer_limit) def put(self, transition): result_queue, idx): super(Worker, self).__init__() self.result_queue = result_queue # 共享队列 self.server = server # 中央模型 self.opt = opt # 中央优化器 self.client = ActorCritic(4 Network,调用 opt 对象完成 Global Network 的优化更新。训练代码如下: def train(self): res_queue = Queue() # 共享队列 # 创建各个交互环境 workers = [Worker(self.server, self.opt, res_queue, i)
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
共 7 条
  • 1
前往
页
相关搜索词
推荐模型基础特点大规规模大规模深度学习系统设计Keras基于Python经典算法人工智能人工智能外卖物流调度应用阿里云上建模实践程孟力AI千问qwen中文文档动手v2PyTorch深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩