人工智能发展史0 码力 | 54 页 | 3.87 MB | 1 年前3
星际争霸与人工智能星际争霸与人工智能 阿里巴巴认知计算实验室 龙海涛 Why StarCraft? Challenge Problems for Artificial Intelligence Imperfect Information Huge State and Action Space Long-Term Planning Temporal and Spatial Reasoning0 码力 | 24 页 | 2.54 MB | 1 年前3
经典算法与人工智能在外卖物流调度中的应用. 1 2 3 提纲 4 外卖订单的智能 调度系统 一. 智能调度系统的 大数据分析监控 二. 智能调度系统中 的人工智能 三. 提纲 5 外卖订单的智能 调度系统 一. 智能调度系统的 大数据分析监控 二. 智能调度系统中 的人工智能 三. 外卖订单智能调度系统发展历程 6 人工派单模式 • 调度员根据订单地址和骑士 位置来进行订单分配 • 人力调度派单峰值为每人 况下,最大化的承载适合的单量 15 调度系统算法 1 2 3 4 5 提纲 16 外卖订单的智能 调度系统 一. 智能调度系统的 大数据分析监控 二. 智能调度系统中 的人工智能 三. 调度系统 智能调度系统的分析监控 17 • 真实再现调度场景细节 • 回溯定位异常调度原因,诊断调试算法 • 实时获取调度监控指标 • 及时预警引入人工干预 • 精准模拟实际订单分布情况 实时监控 | 监控现在 仿真系统 | 预测未来 寻宝系统 | 指导业务 调度系统 提纲 23 外卖订单的智能 调度系统 一. 智能调度系统的 大数据分析监控 二. 智能调度系统中 的人工智能 三. 智能调度系统的自主学习能力 预分配 在线预估 实时评价 基础设施 搜索方式 Grid Search 训练维度 分商圈 分时段 Genetic Algorithm Gradient0 码力 | 28 页 | 6.86 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112预览版202112 预览版202112 前 言 这是一本面向人工智能,特别是深度学习初学者的书,本书旨在帮助更多的读者朋友了 解、喜欢并进入到人工智能行业中来,因此作者试图从分析人工智能中的简单问题入手,一 步步地提出设想、分析方案以及实现方案,重温当年科研工作者的发现之路,让读者身临其 境式的感受算法设计思想,从而掌握分析问题、解决问题的能力。这种方式也是对读者的基 础要求较少的,读者 尽管作者试图将读者的基础要求降到最低,但是人工智能不可避免地需要使用正式化的 数学符号推导,其中涉及到少量的概率与统计、线性代数、微积分等数学知识,一般要求读 者对这些数学知识有初步印象或了解即可。比起理论基础,读者需要有少量的编程经验,特 别是 Python 语言编程经验,显得更加重要,因为本书更侧重于实用性,而不是堆砌公式。 总的来说,本书适合于大学三年级左右的理工科本科生和研究生,以及其他对人工智能算法 感兴趣的朋友。 感兴趣的朋友。 本书共 15 章,大体上可分为 4 个部份:第 1~3 章为第 1 部分,主要介绍人工智能的初 步认知,并引出相关问题;第 4~5 章为第 2 部分,主要介绍 PyTorch 相关基础,为后续算法 实现铺垫;第 6~9 章为第 3 部分,主要介绍神经网络的核心理论和共性知识,让读者理解深 度学习的本质;第 10~15 章为模型算法应用部分,主要介绍常见的算法与模型,让读者能够 学有所用。0 码力 | 439 页 | 29.91 MB | 1 年前3
Qcon北京2018-《文本智能处理的深度学习技术》-陈运文个性化推荐等文本智能处理技术服 务,是国内首家将自动语义分析技术应用于企业数据化运营的人工智能公司 专注于文本挖掘的国际领军人工智能企业 l 获得全球三十大最佳AI企业等荣誉,拥有国家级高新技术企业、CMMI3资质认 证、ISO9001质量管理体系认证、双软认证等最全面的企业服务资质。 权威认证的人工智能服务,可充分保障客户业务实践与业务安全 l 覆盖金融、制造、法律、电商、传媒等行业,提升企业文档自动化处理能力 为数百家中国知名客户提供完善的文本智能处理服务 01 文本智能处理背景简介 7 文本 语音 图像 人工智能 Voice Image Text 达观专注于人工智能中的文本处理细分领域 文本处理任务 什么是NLP 概念:Natural Language Processing 自然语言处理 目的:让机器理解人类的语言,是人工智能领域的重要 分支,用于分析、理解和生成自然语言,方便人机交流 应用:智能问答,机器翻译,文本分类,文本摘要,标 深度学习(CNN,RNN等) • 端到端,无需大量特征工程 • 框架通用性好,满足多领域需求 • 可以使用非监督语料训练字词向量提升效果 文本分类 CNN RNN CLSTM 序列标注 传统机器学习(CRF) • 需要大量特征工程 • 不同领域需要反复调整 深度学习(Bi-LSTM+CRF) • 多领域通用 • 输入层采用词向量,提升泛化能力 • 循环神经网络(LSTM,GRU等)能学0 码力 | 46 页 | 25.61 MB | 1 年前3
谭国富:深度学习在图像审核的应用Webank身份证识别,主播实名认证: 方便用户快速 的输入证件信息。 SACC2017 OCR识别 – 通用场景和手写 Ø 手写体手机/电话识别准确率可达99%以上。突破业界复杂手写体 识别的难题。 Ø 通用场景准确率和召回率均在88%以上。 Ø 应用场景:快递单据,广告识别等。 l 手写体OCR以及通用OCR识别 l 落地应用: Ø 微云相册识别,广点通广告识别,顺丰快递单据识别,微云文本 识别等 深度学习算法在 语音和视觉识别 上有重大突破, 识别率超过99% 和95% 1970 受限于 计算能 力,进 入第一 个寒冬 XCON专 家系统出 现,每年 节约4000 万美元 第1阶段:人工智能起步 期 (1956-1980s) 第2阶段:专家系统推 广 (1980s-1990s) 第3阶段:深度学习 (2000s-至今 ) 1997 IBM的 Deep Blue战 胜国际 象棋冠 2012 Google的 无人驾驶 汽车上路 (2009年 宣布) 2016 Deepmind团队 AlphaGo&Ma ster运用深度学 习算法战胜围 棋冠军 1990-1991 人工智能计算 机DARPA没 能实现,政府 投入缩减,进 入第二次低谷 深度学习 - 带动的AI浪潮 2016 2016 深度学习全面爆发 2016 - 讯飞,搜 狗,阿里 演示了实 时语音识0 码力 | 32 页 | 5.17 MB | 1 年前3
李东亮:云端图像技术的深度学习模型与应用云端图像技术的深度学习模型与应用 李东亮 360 人工智能研究院 lidongliang@360.cn 2017.10.20 SACC2017 360电脑安全产品 月活跃数达到4.42亿 360手机安全产品 移动端用户总数已达约1.49亿 360浏览器 月活跃用户数量为3.03亿 360导航 日均独立访问用户为8900万人 日均点击量约为4.51亿次 360搜索 稳定拥有35%以上的市场份额 新时代的奇虎360 SACC2017 万物互联的新时代 交通 智能家居 机器人 AR/VR/MR 智能手机 穿戴设备 SACC2017 万物互联的核心技术 视觉感知 语音感知 语义理解 人工智能 大数据分析 物 环境 SACC2017 图像 视频 检测 识别 分割 跟踪 物 环境 数 据 核 心 云端 移动端 业 务 视觉感知模型 SACC2017 视觉感知核心问题 RNN Single Frame Predictor 检测 RNN SACC2017 360小水滴摄像机:视觉大不同 小水滴·360智能摄像机 视觉大不同 你不在家时有它在 通过语音人工智能实现求救与留言功能 Cloud-API 每天调用1.5亿次!2000QPS! SACC2017 系统框架 n 根据业务需求,对图像人脸进行识别,将结果推送到业务端 n 基于深度学习的准确的人脸检测、特征抽取0 码力 | 26 页 | 3.69 MB | 1 年前3
QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒6亿美元收购深度学 习公司 DeepMind Facebook 建立人工智能实验室 并聘用 Yann LeCun 深度学习鼻祖 Hinton 赢得 ImageNet图像识别竞赛 赢得ImageNet 5项主要比赛中 的3项世界冠军 软银孙正义收购Google旗下的 机器人公司Boston Dynamics 和Schaft 通用 10亿美元 收购无人驾驶技 术初创公司Cruise Automation 软银孙正义设立1000亿美元人 工智能基金,320亿美元收购芯 片架构公司ARM 2016.7 公司简介 历史业绩 领先技术 20年 科研经验 800余位 技术研发人员 150余位 人工智能博士 唯一 深度学习 平台公司 累计融资 全球最大 核心技术 全球领先 商业营收 市占率 行业第一 400余家 大型客户伙伴 共同发展 AI+金融 AI+智慧城市 AI+芯片 AI+无人驾驶 1/1亿 错误概率 97% 通过率 6位密码时代 1/100万 错误概率 95% 通过率 6000万张人脸训练 2016 2017 What’s Next? 2018 自我演化的异构人工智能云 云原生的深度学习数据闭环 自进化深度学习系统 高度定制的 图片、特征仓库 深度学习 应用服务 场景相关业务 数据清洗-查询 深度学习训练平台 模型测试与验证 深度学习算法在产品应用中的挑战0 码力 | 23 页 | 9.26 MB | 1 年前3
动手学深度学习 v2.0这种简单的离线学习有它的魅力。好的一面是,我们可以孤立地进行模式识别,而不必分心于其他问题。但 缺点是,解决的问题相当有限。这时我们可能会期望人工智能不仅能够做出预测,而且能够与真实环境互动。 与预测不同,“与真实环境互动”实际上会影响环境。这里的人工智能是“智能代理”,而不仅是“预测模型”。 因此,我们必须考虑到它的行为可能会影响未来的观察结果。 考虑“与真实环境互动”将打开一整套新的建模问题。以下只是几个例子。 强化学习 如果你对使用机器学习开发与环境交互并采取行动感兴趣,那么最终可能会专注于强化学习(reinforcement learning)。这可能包括应用到机器人、对话系统,甚至开发视频游戏的人工智能(AI)。深度强化学习(deep reinforcement learning)将深度学习应用于强化学习的问题,是非常热门的研究领域。突破性的深度Q网络 (Q‐network)在雅达利游戏中仅使用视觉输入就击败了人类,以及 中进行了说明。请注意,强化学习的目标是产生一个好 的策略(policy)。强化学习智能体选择的“动作”受策略控制,即一个从环境观察映射到行动的功能。 30 1. 引言 图1.3.7: 强化学习和环境之间的相互作用 强化学习框架的通用性十分强大。例如,我们可以将任何监督学习问题转化为强化学习问题。假设我们有一 个分类问题,可以创建一个强化学习智能体,每个分类对应一个“动作”。然后,我们可以创建一个环境,该 环境给予智能体的奖0 码力 | 797 页 | 29.45 MB | 1 年前3
机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入• 多任务模型的特点:跟传统ML需要专 门的标注数据集不同(从而训练出专 业AI),多任务模型不采用专门AI手 段,而是在海量数据喂养训练的基础 上,适配任何任务形式。 ✓ 转向更通用的系统,使其可以执行许 多任务,最终无需为每个任务手动创 建和标记训练数据集。 ✓ 机器学习系统通过使用大型数据集、高容 量模型和监督学习的组合,在训练任务方 面表现出色,然而这些系统较为脆弱,对 结果进行排序 这个数据用来训练反 馈模型 新的prompt从 数据集中抽样 借助模型生成输出 反馈模型为输出计算 一个反馈结果 反馈结果用来优化策 略 41 ChatGPT得益于通用(基础)模型所构建 AI 系统的新范式 资料来源:《On the Opportunities and Risks of Foundation Models 》论文 ◼ 基础模型(Foundation 2020)和CLIP(Radford et al. 2021)。 ✓ 机器学习使学习算法同质化(例如,逻辑回归),深度学习使模型架构同质化(如卷积神经网络),而基础模型使模型本身同质化(比如, GPT-3)。 图37:人工智能的发展呈现同质化的过程 随着机器学习的引入,任务是如何执行的 (自动推断)从例子中显现出来 随着深度学习, 用于预测的高级 特征出现 有了基础模型,甚至出现了情境学习等高级 功能0 码力 | 44 页 | 2.36 MB | 1 年前3
共 24 条
- 1
- 2
- 3













