积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(18)机器学习(18)

语言

全部中文(简体)(17)英语(1)

格式

全部PDF文档 PDF(18)
 
本次搜索耗时 0.069 秒,为您找到相关结果约 18 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Keras: 基于 Python 的深度学习库

    17 3.2.2 例一:全连接网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.3 所有的模型都可调用,就像网络层一样 . . . . . . . . . . . . . . . . . . . . 17 3.2.4 多输入多输出模型 . . . . . . . . . . . . . . . . 让我们先从一些简单的例子开始。 3.2.2 例一:全连接网络 Sequential 模型可能是实现这种网络的一个更好选择,但这个例子能够帮助我们进行一些 简单的理解。 • 网络层的实例是可调用的,它以张量为参数,并且返回一个张量 • 输入和输出均为张量,它们都可以用来定义一个模型(Model) • 这样的模型同 Keras 的 Sequential 模型一样,都可以被训练 from import Input, Dense from keras.models import Model # 这部分返回一个张量 inputs = Input(shape=(784,)) # 层的实例是可调用的,它以张量为参数,并且返回一个张量 x = Dense(64, activation='relu')(inputs) x = Dense(64, activation='relu')(x) predictions
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    大小(size)。因为这里在处理的是 一个向量,所以它的shape与它的size相同。 40 2. 预备知识 x.numel() 12 要想改变一个张量的形状而不改变元素数量和元素值,可以调用reshape函数。例如,可以把张量x从形状为 (12,)的行向量转换为形状为(3,4)的矩阵。这个新的张量包含与转换前相同的值,但是它被看成一个3行4列 的矩阵。要重点说明一下,虽然张量的形状 我们的目标形状是(高度,宽度),那么在 知道宽度后,高度会被自动计算得出,不必我们自己做除法。在上面的例子中,为了获得一个3行的矩阵, 我们手动指定了它有3行和4列。幸运的是,我们可以通过-1来调用此自动计算出维度的功能。即我们可以 用x.reshape(-1,4)或x.reshape(3,-1)来取代x.reshape(3,4)。 有时,我们希望使用全0、全1、其他常量,或者从特定分布中 通过将标量函数升级为按元素向量运算来生成向量值 F : Rd, Rd → Rd。 对于任意具有相同形状的张量,常见的标准算术运算符(+、-、*、/和**)都可以被升级为按元素运算。我 们可以在同一形状的任意两个张量上调用按元素操作。在下面的例子中,我们使用逗号来表示一个具有5个 元素的元组,其中每个元素都是按元素操作的结果。 42 2. 预备知识 x = torch.tensor([1.0, 2, 4, 8])
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02机器学习-回归

    线性回归(Linear Regression) 是一种通过属性的线性组合来进行预测 的线性模型,其目的是找到一条直线或 者一个平面或者更高维的超平面,使得 预测值与真实值之间的误差最小化。 6 线性回归-符号约定 建筑面积 总层数 楼层 实用面积 房价 143.7 31 10 105 36200 162.2 31 8 118 37000 199.5 10 10 170 42500 96.5 31 13
    0 码力 | 33 页 | 1.50 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02-数学基础回顾-1.CS229-LinearAlgebra

    表示矩阵 的第 行: 在许多情况下,将矩阵视为列向量或行向量的集合非常重要且方便。 通常,在向量而不是标量上 操作在数学上(和概念上)更清晰。只要明确定义了符号,用于矩阵的列或行的表示方式并没有通 用约定。 2.矩阵乘法 两个矩阵相乘,其中 and ,则: 其中: 请注意,为了使矩阵乘积存在, 中的列数必须等于 中的行数。有很多方法可以查看矩阵乘法,我们 将从检查一些特殊情况开始。
    0 码力 | 19 页 | 1.66 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    执行的桥梁,是 Python 语言 的核心软件。用户可以从 https://www.python.org/网站下载最新版本(Python 3.7)的解释器, 像普通的应用软件一样安装完成后,就可以调用 python.exe 程序执行 Python 语言编写的源 代码文件(.py 格式)。 这里选择安装集成了 Python 解释器和虚拟环境等一系列辅助功能的 Anaconda 软件, 用户通过安装 最新版本的下载链接即可下载,下载完成后安 装即可进入安装程序。如图 1.22 所示,勾选”Add Anaconda to my PATH environment variable”一项,这样可以通过命令行方式调用 Anaconda 程序。如图 1.23 所示,安装程序 询问是否连带安装 VS Code 软件,选择 Skip 即可。整个安装流程约持续 5 分钟,具体时间 预览版202112 第 1 章 人工智能绪论 对象,方便以批量形式训练,随机打乱顺序 train_loader=torch.utils.data.DataLoader(train_db, batch_size=batch_size, sh uffle=True) 通过调用 torchvision.datasets.MNIST 函数可以方便地读取 MNIST 数据集,通过 train=True 选择生成训练集还是测试机。其中训练集?的大小为(60000,28,28),代表了
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 pytorch 入门笔记-03- 神经网络

    高 * 宽)。如果你有单个样本,只需使用 input.unsqueeze(0) 来添加其它的维数 在继续之前,我们回顾一下到目前为止用到的类。 回顾: ● torch.Tensor:一个用过自动调用backward() 实现支持自动梯度计算的多维数组 ,并且保存关于 个向量的梯度 w.r.t. ● nn.Module:神经网络模块。封装参数、移动到 GPU 上运行、导出、加载等。 ● nn 定义,每个变量操作至少创建一个函数 点,每一个Tensor 的操作都会创建一个接到创建Tensor 和编码其历史 的函数的Function 节点。 重点如下: ● 定义一个网络 ● 处理输入,调用 backword 还剩: ● 计算损失 ● 更新网络权重 原文链接:pytorch 入门笔记 -03- 神经网络 损失函数 一个损失函数接受一对 (output, target) 作为 relu -> maxpool2d -> view -> linear -> relu -> linear -> relu -> linear -> MSELoss -> loss 所以,当我们调用 loss.backward() 时,整张计算图都会 根据 loss 进行微分,而且图中所有设置为 requires_grad=True 的张量 将会拥有一个随着梯度累积的 .grad 张量。
    0 码力 | 7 页 | 370.53 KB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    的 Dataset 类型的。 参数 transf orm 表示导出的数据应该怎么转换,我们还可以使用参数 target_transf orm 表 示导出的数据标签应该怎么转换。 注意显示时我们调用了 squeeze() 函数,这是因为原来的数据维度是 (1,28,28) 的三维数据, 使用.squeeze() 函数可以把为 1 的维度去掉,即 shape 变为 (28,28)。程序得到显示结果: (1.2.1) [0 1 0] (1.2.2) [0 0 1] (1.2.3) Lambda 函数就是应用用户定义的 lambda 函数,首先使用 zeros 函数创建一个 10 维数组, 然后调用.scatter 函数为每个向量的第 label 个索引赋值为 1。 由于 pytorch 的网络训练会自动帮你进行转换,所以我们不需要自己去操作,因此并不需要 设置 target_transf () Chapter 3. 更完善的神经网络 17 注意 bias 是权重,因为当前层的 bias 会连接下一层的每个神经元,所以 bias 的 shape 是下 一层神经元个数。调用也很简单,定义网络对象后直接调用即可: model = NeuralNetwork () . to ( device ) model . weight_init () 我们开始训练,发现第一个 epoch 训练的结果正确率就达到了
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    tensor([3, 2]) 运行结果的第一行对应是声明的张量 x 的维度信息、第二行是 调用 transpose 方法完成通道交换之后 x 输出的维度信息;第 三行是针对 x 调用 argmax 得到最大值对应索引(12 对应索 引值为 3)、第四行是进行维度变换之后针对二维数据(2x4) 的第二个维度调用 argmax 得到的输出,分别是 12 与 8 对应 的索引值 [3,2]。 ●
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》3-方案设计篇:如何设计可落地的AI解决方案

    用户需求:线下门店业绩如何提升? • 长期⽬目标:货架数字化与业务智能化 • 短期目标:自动化陈列审核和促销管理 • 方案设计:基于深度学习的检测/分类的AI流水线 • 方案交付:支持在线识别和API调用的 AI SaaS 目录 行业背景:AI新零售是什么? 人类零售演进史 ——《C时代 新零售——阿里研究院新零售研究报告》 中国零售发展处于初级阶段 ——《C时代 新零售——阿里研究院新零售研究报告》 [[Bbox1], [Bbox2], …] [[Bbox1, Score1, Label1], [Bbox2, Score2, Label2], …] Image 方案交付: 支持在线识别和API调用的 AI SaaS AI SaaS Showcase AI SaaS Showcase AI SaaS Showcase AI SaaS Showcase AI 通用物品识别平台架构 品
    0 码力 | 49 页 | 12.50 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒

    Kubernetes在异构系统调度中的挑战 • Kubernetes版本发布快,新特性更新频繁,对异构调度的支持不断加强;但配套设施落后(e.g. Spark on K8s, GitlabCI) • 容器系统调用栈深,需要仔细验证操作系统,内核及异构设备驱动的兼容性 • Kubernetes对NUMA、异构计算、存储设备的调度能力待加强 1.6 nvidia/gpu custom scheduler gofmt, go lint, race-detector Go语言在高性能系统中的实践经验 • Go在开发高性能应用上也有一些不足, 对比C++: - 无法直接控制操作系统线程,CUDA 调用需要特殊处理 - 部分标准库实现依赖reflect,性能较 差 - GC的带来的开销,如在Go Heap上 构建百万以上级别的对象缓存,需要 仔细优化 百倍慢于等价的C实现! 回顾 •
    0 码力 | 23 页 | 9.26 MB | 1 年前
    3
共 18 条
  • 1
  • 2
前往
页
相关搜索词
Keras基于Python深度学习动手v2机器课程温州大学02回归数学基础回顾CS229LinearAlgebraPyTorch深度学习pytorch入门笔记03神经网络神经网神经网络连接实战OpenVINO开发系列教程第一一篇第一篇TensorFlow快速方案设计方案设计如何落地AI解决解决方案QCon北京2018未来都市智慧城市视觉陈宇恒
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩