深度学习下的图像视频处理技术-沈小勇深度学习下的图像视频处理技术 沈小勇 优图X-Lab视觉AI负责人 专家研究员 自我介绍 自我介绍 2006.9 – 2012.7 浙江大学数学系本科硕士 2012.8 – 2016.6 香港中文大学博士 2016.6 – 2017.5 香港中文大学 Research Fellow 2017.5 – 现在 腾讯优图X-Lab 视觉AI负责人,专家研究员 个人主页:http://xiaoyongshen0 码力 | 121 页 | 37.75 MB | 1 年前3
Qcon北京2018-《文本智能处理的深度学习技术》-陈运文达观数据 陈运文 文本智能处理的深度学习技术 达观数据CEO 陈运文 博士 • 中 国 计 算 机 学 会 高 级 会 员 , A C M 和 I E E E 学 会 会 员 , 复 旦 大 学 计 算 机 博 士 和 杰 出 毕 业 生 • 原 腾 讯 文 学 高 级 总 监 、 盛 大 文 学 首 席 数 据 官 、 百 度 核 心 技 术 工 程 师 • 三 十 项 国 家 技 术 法 》 专 注 于 企 业 文 本 挖 掘 技 术 和 相 关 应 用 系 统 的 服 务 个人简介——达观数据CEO 陈运文 达观数据:全球领先的文本智能处理专家 l 为企业提供文本挖掘、知识图谱、搜索引擎和个性化推荐等文本智能处理技术服 务,是国内首家将自动语义分析技术应用于企业数据化运营的人工智能公司 专注于文本挖掘的国际领军人工智能企业 l 获得全球三十大最佳AI企业等荣誉,拥有国家级高新技术企业、CMMI3资质认 覆盖金融、制造、法律、电商、传媒等行业,提升企业文档自动化处理能力 为数百家中国知名客户提供完善的文本智能处理服务 01 文本智能处理背景简介 7 文本 语音 图像 人工智能 Voice Image Text 达观专注于人工智能中的文本处理细分领域 文本处理任务 什么是NLP 概念:Natural Language Processing 自然语言处理 目的:让机器理解人类的语言,是人工智能领域的重要0 码力 | 46 页 | 25.61 MB | 1 年前3
机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入1 2023年05月 深度学习-自然语言处理和词嵌入 黄海广 副教授 2 03 Word2Vec 04 GloVe 本章目录 01 词汇表征和文本数据处理 02 词嵌入 05 GPT 3 1.词汇表征 01 词汇表征和文本数据处理 03 Word2Vec 04 GloVe 02 词嵌入 05 GPT GPT 4 1.词汇表征和文本数据处理 5 1.词汇表征和文本数据处理 6 1.词汇表征和文本数据处理 7 1.词汇表征和文本数据处理 8 2.词嵌入 03 Word2Vec 04 GloVe 02 词嵌入 05 GPT 01 词汇表征和文本数据处理 9 2.词嵌入 “Sally Johnson is an orange farmer 2.词嵌入 嵌入矩阵 14 3.Word2Vec 03 Word2Vec 04 GloVe 02 词嵌入 05 GPT 01 词汇表征和文本数据处理 15 3.Word2Vec 语言模型的训练机制就是这样 1.我们获得了大量文本数据(例如,所 有维基百科文章)。然后 2.我们有一个窗口(比如说三个单词) ,我们会对所有文本进行滑动。0 码力 | 44 页 | 2.36 MB | 1 年前3
Keras: 基于 Python 的深度学习库. . . . . . . 29 3.3.6.3 只保存/加载模型的权重 . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.6.4 处理已保存模型中的自定义层(或其他自定义对象) . . . . . . . 30 3.3.7 为什么训练误差比测试误差高很多? . . . . . . . . . . . . . . . . . . 31 3.3.8 如何获取中间层的输出? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.9 如何用 Keras 处理超过内存的数据集? . . . . . . . . . . . . . . . . . . . . 32 3.3.10 在验证集的误差不再下降时,如何中断训练? . . . . . . . . . 编写你自己的 Keras 层 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6 数据预处理 118 6.1 序列预处理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.1.10 码力 | 257 页 | 1.19 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波实时特征 实时数据 3 在线机器学习 实时样本 实时模型训练 实时更新参数 Task 训练预处理 Node 实时样本拼接 Node 在线模型训练 Node 离线样本拼接 Node 在线模型评估 Node 模型上线 Node 实时特征处理 Node 离线特征处理 Task Kafka输入 input process process output WeiFlow WeiFlow 工作流 Task 模型训练 Task 模型训练 Task Metrics输出 3 在线机器学习-工作流 互动行为日志 数据处理 点击行为日志 阅读行为日志 曝光行为日志 数据过滤 样本拼接 定时轮询 Kafka Hdfs 样本输出 3 在线机器学习-实时样本生成 • 多流拼接 • 曝光,互动,点击,真实阅读等多种数据流接入并多流拼接 • 如何解决日志延时问题 如何解决内存问题 • 调整内存参数 • 关闭多余的监控点 • 如何异常处理 • 自动化监控与修复系统 • Checkpoint 节点异常修复 3 在线机器学习-实时样本生成 • 在线机器学习模型训练:Flink/Blink+WeiPS 样本生成和特征处理 1.配置化 2.多标签样本 3.支持高维HASH 训练预处理 1.标签选择 2.标签UDF 3.样本过滤 4.特征过滤0 码力 | 36 页 | 16.69 MB | 1 年前3
AI大模型千问 qwen 中文文档4 比特量化模型。相较于 FP16,AutoAWQ 能够将模型的运行速度提升 3 倍,并将内存需求降低至原来的 1/3。AutoAWQ 实现了激活 感知权重量化(AWQ)算法,可用于 LLM 的量化处理。在本文档中,我们将向您展示如何在 Transformers 框 架下使用量化模型,以及如何对您自己的模型进行量化。 1.7.1 如何在 Transformers 中使用 AWQ 量化模型 现在,Transformers 大型语言模型的量化方法,它基于近似二阶信息进行一次性权重量化。在本文 档中,我们将向您展示如何使用 transformers 库加载并应用量化后的模型,同时也会指导您如何通过 AutoGPTQ 来对您自己的模型进行量化处理。 1.8.1 在 Transformers 中使用 GPTQ 模型 现在,Transformers 正式支持了 AutoGPTQ,这意味着您能够直接在 Transformers 中使用量化后的模型。以下 range(4)} ) 接下来,你需要准备数据进行校准。你需要做的是将样本放入一个列表中,其中每个样本都是一段文本。由 于我们直接使用微调数据进行校准,所以我们首先使用 ChatML 模板对它进行格式化处理。例如: import torch data = [] for msg in messages: text = tokenizer.apply_chat_template(msg, tokenize=False0 码力 | 56 页 | 835.78 KB | 1 年前3
从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱模型 管理 上线 管理 ⽆量 RGW/Cos/ kafka 样本 存储 实时样本 ⽣成服务 离线样本 ⽣成任务 数据 通道 特征 处理 模型 登记 模型 上线 预测 请求 数据 落地 ⽆量 ⽤户⾏为数据上报 特征 库 内容 获取 请求 � 推荐场景的重要性 � PCG的图⽂,视频推荐(腾讯视频,腾讯新 闻,QQ看点,浏览器,微视, QQ⼩世界等) � 腾讯系内容推荐:阅⽂集团,QQ⾳乐 Table 查询Dense Tensor Reader Learner Worker 返回参数 Request Handler Parameter Server 更新参数 � 异步参数处理流⽔线 参数 预准备 Batch⼊队列 Batch⼊队列 � 效果: � 在不影响训练效果的情况下,降低参数准备与更新耗时,提 ⾼训练速度。训练耗时下降超50% � 异步storage线程,⽀持基于冷热数据的多级存储。内存消 多线程⽆锁:基于模型版本的读写分离 � 多机:多副本并⾏读取 � CPU:固定64位key,基于L1缓存的查 询优化 � 业务需求 � 模型⼤⼩超TB � 单个请求需要15W个key � 耗时要求10ms以下 � 资讯业务请求量⼤ (>10000请求/秒) � 模型有多个版本 � 原有在线分布式存储系统的 问题 � 主备模式资源严重浪费 � 数据读写需要加锁 � ⽀持多模型和模型多版本0 码力 | 22 页 | 6.76 MB | 1 年前3
动手学深度学习 v2.046 2.1.6 转换为其他Python对象 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2 数据预处理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2.1 读取数据集 读取数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2.2 处理缺失值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2.3 转换为张量格式 6.1 基本概率论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.6.2 处理多个随机变量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2.6.3 期望和方差 . .0 码力 | 797 页 | 29.45 MB | 1 年前3
超大规模深度学习在美团的应用-余建平MLX平台架构 MLX平台架构 • 基于Worker + PS架构搭建 • Worker 模型计算引擎(Engine) 计算图框架(Graph) • 模型计算引擎Engine 模型结构处理 与PS通信交换模型参数 计算图的计算 • 计算图框架Graph 计算逻辑抽象op,通过op组合形成模型结构 提供正向(forward)、反向(backward)、Loss的操作扩展 NN网络矩阵按行切分,解决请求包不均衡问题 特征按照Hash方式分布式存储 • 模型并行调超参 grid search random search PS的多模型训练 • 提高内存使用效率 model group内共享特征key的存储 • 超大规模模型 -> 高扇出的分布式PS • 长尾效应:单个分片的抖动(网络、CPU)对请求影响变大 单分片4个9的可用性 将特征数据进行转换,转换成模型所需的格式,比如离散化 模型计算: 传入转换后的特征数据,调用模型计算引擎 在线预估服务 • 特征编码方式 通过明文hash的方式编码 适用于特征的动态增长 不需要预分配,提高处理效率 • 框架与实现分离 提供op形式的特征抽取类 逻辑一致性:在线、近线、离线 特征抽取框架 目录 • 美团超大规模模型场景简介 • 超大规模机器学习MLX MLX平台目标0 码力 | 41 页 | 5.96 MB | 1 年前3
QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒l单机、简易分布式人脸检测、跟踪、比对平台 l处理数十路到数百路监控摄像头数据 l千万级别深度学习特征检索 l行业试水 2018-2019 l云原生Cloud-Native超大规模视图存储、处理、检 索 l处理数万到数十万路,城市范围级别监控、门禁摄 像头数据 l10-100 Billion级别深度学习特征检索 - PB以上级别数据库存储 - 100PB级别抓拍图片存储 - 每秒万次并发检索请求 l大规模推广应用 高度定制的 图片、特征仓库 深度学习 应用服务 场景相关业务 数据清洗-查询 深度学习训练平台 模型测试与验证 深度学习算法在产品应用中的挑战 • 深度学习算法也需要“深度”学习业务需求 - 处理特殊输入,如模糊、黑白照片 - 适配具有不同特征的数据源 - 在严肃应用中,客户追求100%准确率,算法性能提升永无止境 • 深度学习模型需要在准确率和速度上做均衡 - 使用更加精巧的模型和Operator设计 go lint, race-detector Go语言在高性能系统中的实践经验 • Go在开发高性能应用上也有一些不足, 对比C++: - 无法直接控制操作系统线程,CUDA 调用需要特殊处理 - 部分标准库实现依赖reflect,性能较 差 - GC的带来的开销,如在Go Heap上 构建百万以上级别的对象缓存,需要 仔细优化 百倍慢于等价的C实现! 回顾 • 智慧城市中,在智能安防领域机器视觉有着爆发式应用0 码力 | 23 页 | 9.26 MB | 1 年前3
共 55 条
- 1
- 2
- 3
- 4
- 5
- 6













