【PyTorch深度学习-龙龙老师】-测试版202112参考文献 第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 8.8 参考文献 第 9 章 过拟合 9.1 模型的容量 9.2 过拟合与欠拟合 9.3 数据集划分 9.4 模型设计 9.5 正则化 9 图 1.20 百度 Apollo 自动驾驶汽车④ 1.5 深度学习框架 工欲善其事,必先利其器。在介绍了深度学习相关背景知识后,现在来挑选一下实现 深度学习算法所使用的工具吧。 1.5.1 主流框架 ❑ Theano 是最早的深度学习框架之一,由 Yoshua Bengio 和 Ian Goodfellow 等人开发, ③ 图片来自 https://www PyTorch 在工业部署上也有成 熟的 ONNX 生态,丝毫不逊色于 TensorFlow。 1.5.3 功能演示 深度学习的核心是算法的设计思想,深度学习框架只是我们实现算法的工具。对工具 的理解有助于加深对算法的掌握程度。下面将演示 PyTorch 深度学习框架的三大核心功 能,从而帮助我们理解框架在算法设计中扮演的角色。 1) 加速计算 神经网络本质上由大量的矩0 码力 | 439 页 | 29.91 MB | 1 年前3
Keras: 基于 Python 的深度学习库. . . . . . . . . . . . . . . . . . . . 233 18 可视化 Visualization 234 19 Scikit-learn API 235 20 工具 236 20.1 CustomObjectScope [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 (如果你计划在 GPU 上运行 Keras,建议安装)。 • HDF5 和 h5py (如果你需要将 Keras 模型保存到磁盘,则需要这些)。 • graphviz 和 pydot (用于可视化工具绘制模型图)。 然后你就可以安装 Keras 本身了。有两种方法安装 Keras: • 使用 PyPI 安装 Keras (推荐): sudo pip install keras 如果你使用 keras.layers.Cropping1D(cropping=(1, 1)) 1D 输入的裁剪层(例如时间序列)。 它沿着时间维度(第 1 个轴)裁剪。 参数 关于 KERAS 网络层 73 • cropping: 整数或整数元组(长度为 2)。在裁剪维度(第 1 个轴)的开始和结束位置应该 裁剪多少个单位。如果只提供了一个整数,那么这两个位置将使用相同的值。 输入尺寸 3D 张量,尺寸为0 码力 | 257 页 | 1.19 MB | 1 年前3
动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 8.1.1 统计工具 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 8.1.2 训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 8.5.5 梯度裁剪 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 8.5.6 训练 . 微调BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738 16 附录:深度学习工具 741 16.1 使用Jupyter Notebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 797 页 | 29.45 MB | 1 年前3
机器学习课程-温州大学-05深度学习-深度学习实践数的值) 3. 选取代价函数值最小的模型 4. 用步骤3中选出的模型对测试 集计算得出推广误差(代价函数 的值) 5 数据集制作 PyTorch的dataloader是用于读取训练数据的工具,它可以自动将数据分割 成小batch,并在训练过程中进行数据预处理。 6 数据集制作 class MyDataset(Dataset): def __init__(self, data): 正则化 数据增强:随意翻转和裁剪、扭曲变形图片 15 数据增强的PyTorch实现 import torch from torchvision import transforms # 定义数据增强的方法 transform = transforms.Compose([ transforms.RandomResizedCrop(224), # 随机裁剪 transforms.0 码力 | 19 页 | 1.09 MB | 1 年前3
超大规模深度学习在美团的应用-余建平AUC、Loss、MAE、RMSE 支持外部eval工具,计算MAP、NDCG MLX的模型能力 • 提供离线、近线、在线全流程解决方案,各阶段提供扩展方案,降低算法迭代成本; • 支持Online Learning,提供从近线到在线的模型数据通路; • 提供从召回到排序全流程的模型解决方案,为业务提供最佳实践; • 提供系统的平台化工具,为用户提供易用的界面操作; MLX模型能力 MLX平台架构 计算逻辑抽象op,通过op组合形成模型结构 提供正向(forward)、反向(backward)、Loss的操作扩展 模型训练框架 • 模型可变计算路径 运行阶段 计算图裁剪 模型训练框架 • 应用场景——离线预计算 模型召回,ANN检索 粗排模型,降低线上计算量 • 分布式Sharding 模型分片存储,支持超大规模模型 数据并行计算,加速Optimizer计算0 码力 | 41 页 | 5.96 MB | 1 年前3
机器学习课程-温州大学-05机器学习-机器学习实践大部分的计算机视觉任务使用很多的数据 ,所以数据增强是经常使用的一种技巧来 提高计算机视觉系统的表现。计算机视觉 任务的数据增强通常以下方法实现: (1) 随意翻转、镜像。 (2) 随意裁剪。 (3) 扭曲变形图片。 (4) 颜色转换,然后给R、G和B三个通道上 加上不同的失真值。产生大量的样本,进 行数据增强。 28 偏差和方差 方差Variance: 描述的是预测值的变化范围,离散程度,0 码力 | 33 页 | 2.14 MB | 1 年前3
AI大模型千问 qwen 中文文档72B; • 针对每种尺寸提供基础模型和 Chat 模型,并确保聊天模型按照人类偏好进行校准; • 对基础模型和 Chat 模型的多语言支持 • 基础模型和聊天模型都支持多种语言; • 支持工具调用、RAG(检索增强文本生成)、角色扮演、AI Agent 等; 想了解更多信息,欢迎访问: • 博客 • GitHub • Hugging Face • ModelScope • Qwen1 qwen7b 1.6 Text Generation Web UI Text Generation Web UI(简称 TGW,通常被称为“oobabooga”)是一款流行的文本生成 Web 界面工具,类似 于 AUTOMATIC1111/stable-diffusion-webui 。它拥有多个交互界面,并支持多种模型后端,包括 Transformers 、 llama.cpp(通过 llama-cpp-python 1.7 AWQ 对于量化模型,我们推荐使用 AWQ 结合 AutoAWQ 。AWQ 即激活感知权重量化,是一种针对 LLM 的低比 特权重量化的硬件友好方法。而 AutoAWQ 是一个易于使用的工具包,专门用于 4 比特量化模型。相较于 FP16,AutoAWQ 能够将模型的运行速度提升 3 倍,并将内存需求降低至原来的 1/3。AutoAWQ 实现了激活 感知权重量化(AWQ)算法,可用于 LLM0 码力 | 56 页 | 835.78 KB | 1 年前3
机器学习课程-温州大学-01机器学习-引言1、一个强大的N维数组对象Array; 2、比较成熟的(广播)函数库; 3、用于整合C/C++和Fortran代码的工具包; 4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy 配合使用更加方便。 NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型、 矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融 公 Python模块-NumPy 广播 62 Python模块-Pandas ⚫Pandas Pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而 创建的。 Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型 数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的 函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分 析环境的重要因素之一。 Python模块-SciPy ⚫SciPy SciPy是构建在NumPy的基础之上的,它 提供了许多的操作NumPy的数组的函数。 SciPy是一款方便、易于使用、专为科学和 工程设计的Python工具包,它包括了统计 、优化、整合以及线性代数模块、傅里叶 变换、信号和图像图例,常微分方差的求 解等 scipy.cluster 向量量化 scipy.constants 数学常量 scipy0 码力 | 78 页 | 3.69 MB | 1 年前3
机器学习课程-温州大学-01深度学习-引言1、一个强大的N维数组对象Array; 2、比较成熟的(广播)函数库; 3、用于整合C/C++和Fortran代码的工具包; 4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy 配合使用更加方便。 NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型、 矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融 公 Python模块-NumPy 广播 63 Python模块-Pandas ⚫Pandas Pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而 创建的。 Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型 数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的 函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分 析环境的重要因素之一。 Python模块-SciPy ⚫SciPy SciPy是构建在NumPy的基础之上的,它 提供了许多的操作NumPy的数组的函数。 SciPy是一款方便、易于使用、专为科学和 工程设计的Python工具包,它包括了统计 、优化、整合以及线性代数模块、傅里叶 变换、信号和图像图例,常微分方差的求 解等 scipy.cluster 向量量化 scipy.constants 数学常量 scipy0 码力 | 80 页 | 5.38 MB | 1 年前3
机器学习课程-温州大学-Scikit-learnScikit-learn概述 Scikit-learn是基于NumPy、 SciPy和 Matplotlib的开源Python机器学习 包,它封装了一系列数据预处理、机器学习算法、模型选择等工具,是数 据分析师首选的机器学习工具包。 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了, scikit-learn简称sklearn,支持包括分类,回归,降维和聚类四大机器学 符号标记 2.Scikit-learn主要用法 y_train | 训练集标签. y_test | 测试集标签. y | 数据标签. 8 2.Scikit-learn主要用法 导入工具包 from sklearn import datasets, preprocessing from sklearn.model_selection import train_test_split from 输入,前提是 数据必须是数值型的 ✓sklearn.datasets模块提供了一系列加载和获取著名数据集如鸢尾 花、波士顿房价、Olivetti人脸、MNIST数据集等的工具,也包括了一 些toy data如S型数据等的生成工具 from sklearn.datasets import load_iris iris = load_iris() X = iris.data y = iris.target0 码力 | 31 页 | 1.18 MB | 1 年前3
共 24 条
- 1
- 2
- 3













