积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(46)机器学习(46)

语言

全部中文(简体)(45)英语(1)

格式

全部PDF文档 PDF(46)
 
本次搜索耗时 0.066 秒,为您找到相关结果约 46 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 动手学深度学习 v2.0

    内存 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 12.4.3 存储器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518 12.4.4 CPU 多机训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 12.7.4 键值存储 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547 13 计算机视觉 549 图1 中用不同的颜色呈现: 目录 3 图1: 全书结构 • 第一部分包括基础知识和预备知识。1节 提供深度学习的入门课程。然后在 2节 中,我们将快速介绍实 践深度学习所需的前提条件,例如如何存储和处理数据,以及如何应用基于线性代数、微积分和概率基 本概念的各种数值运算。3节 和 4节 涵盖了深度学习的最基本概念和技术,例如线性回归、多层感知机 和正则化。 • 接下来的五章集中讨论现代深度学习技术。5节
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    据。以手写的数 字图片识别为例,如图 3.1 所示,需要收集较多的由真人书写的 0~9 的数字图片,为了便 于存储和计算,通常把收集的原始图片缩放到某个固定的大小(Size 或 Shape),比如 224 个 像素的行和 224 个像素的列(224 × 224),或者 96 个像素的行和 96 个像素的列(96 × 96), 图片样本将作为输入数据 x。同时,还需要给每一张图片标注一个标签(Label)信息,它将 格、粗细等丰富的样式,使得数据集的分布与真实的手写数字图片的分布尽可能地接近, 从而保证了模型的泛化能力。 图 3.2 MNIST 数据集样例图片 现在来讨论图片的表示方法。一张图片包含了ℎ行(Height/Row),?列(Width/Column), 每个位置保存了像素(Pixel)值,像素值一般使用 0~255 的整形数值来表达颜色强度信息, 例如 0 表示强度最低,255 表示强度 1]形状的张量)。图 3.3 演示 了内容为 8 的数字图片的矩阵内容,可以看到,图片中黑色的像素用 0 表示,灰度信息用 0~255 表示,图片中越白的像素点,对应矩阵位置中数值也就越大。 28行28列 图 3.3 图片的表示示意图① ① 素材来自 https://towardsdatascience.com/how-to-teach-a-computer-to-see-wi
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    2016年 C轮融资 估值20亿美元 9 机器学习的范围 10 • 给定数据的预测问题 ✓ 数据清洗/特征选择 ✓ 确定算法模型/参数优化 ✓ 结果预测 • 不能解决什么 ✓ 大数据存储/并行计算 ✓ 做一个机器人 机器学习可以解决什么问题 11 机器学习发展史 总的来说,人工智能经历了逻辑推理、知识工程、机器 学习三个阶段。 机器学习伴随着人工智能的发展而诞生,它是人工智能 行列式的某一行(列)的所有的元素都乘以 同一数?,等于用数?乘此行列式。 ⚫ ? ∈ ℝ?×?, det(?) = det(?T). ⚫ ?, ? ∈ ℝ?×?, det(??) = det(?)det(?) ⚫ 当且仅当?为奇异方阵时,det(?) = 0 ⚫ 当?为非奇异方阵时,det(?−1) = 1/det(?) 39 线性代数-矩阵 矩阵:? × ?个数???排成?行?列的表格 为正交阵,数学描述为?T? = ? = ??T。 正定性 对于 ? ∈ ℝ?×?, ∀? ∈ ℝ?×1,满足 ?T?? > 0, A为正定矩阵; ?T?? ≥ 0,?为半正定矩阵。 42 线性代数 行列式按行(列)展开定理 (1) 设? = ??? ?×?,则:??1??1 + ??2??2 + ⋯ + ?????? = ቊ ? , ? = ? 0, ? ≠ ? 或?1??1? + ?2??2? + ⋯
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    行列式的某一行(列)的所有的元素都乘以 同一数?,等于用数?乘此行列式。 ⚫ ? ∈ ℝ?×?, det(?) = det(?T). ⚫ ?, ? ∈ ℝ?×?, det(??) = det(?)det(?) ⚫ 当且仅当?为奇异方阵时,det(?) = 0 ⚫ 当?为非奇异方阵时,det(?−1) = 1/det(?) 40 线性代数-矩阵 矩阵:? × ?个数???排成?行?列的表格 为正交阵,数学描述为?T? = ? = ??T。 正定性 对于 ? ∈ ℝ?×?, ∀? ∈ ℝ?×1,满足 ?T?? > 0, A为正定矩阵; ?T?? ≥ 0,?为半正定矩阵。 43 线性代数 行列式按行(列)展开定理 (1) 设? = ??? ?×?,则:??1??1 + ??2??2 + ⋯ + ?????? = ቊ ? , ? = ? 0, ? ≠ ? 或?1??1? + ?2??2? + ⋯ Python 的环境的安装 55 Python 的主要数据类型 ⚫字符串 ⚫整数与浮点数 ⚫布尔值 ⚫日期时间 ⚫其它 56 Python 的数据结构 ⚫列表(list) 用来存储一连串元素的容器,列表用[ ]来表示,其中元素的类型可不相同。 ⚫元组(tuple) 元组类似列表,元组里面的元素也是进行索引计算。列表里面的元素的值可以修改,而元组 里面的元素的值不能修改,只能读取。元组的符号是(
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    同时支持单机和分布式TensorFlow程序� • 支持GPU资源管理和调度� • 不再需要⼿动配置CluserSpec信息,仅需要设置work 和ps的数量� • 训练数据和训练模型基于HDFS统⼀存储� • 作业训练结束自动回收work、ps和Tensorboard进程� • 训练效果和性能没有损失� 基本目标:� TensorFlow on Yarn设计 • 支持GPU亲和性调度(提⾼通信效率)� 启动Tensorboard服务:� TensorFlow on Yarn技术细节揭秘 降低已有tensorflow程序迁移成本:� (1)单机模式 不需要修改代码 (2)分布式模式(最多修改三行代码) cluster = !.train.ClusterSpec(json.loads(os.environ[“TF_CLUSTER_DEF”])) job_name = os.environ[“TF_ROLE”] 通过RDD读取训练样本数据,关心 文件存储格式 直接读取HDFS数据,不关心文件存 储格式 Worker和PS的资源同构 Worker和PS可以各自配置资源 不支持GPU调度 支持GPU调度 迁移成本较高 迁移成本低 嵌入到Spark计算框架里,方便打通 数据流 实现了一种新的Yarn Applica\on,可 以与TensorFlow灵活整合和功能定制 代码量几百行 代码量几千行 About
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    y_train, epochs=5, batch_size=32) 或者,你可以手动地将批次的数据提供给模型: model.train_on_batch(x_batch, y_batch) 只需一行代码就能评估模型性能: loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128) 或者对新的数据生成预测: classes Input(shape=(784,)) # 这是可行的,并且返回上面定义的 10-way softmax。 y = model(x) 快速开始 18 这种方式能允许我们快速创建可以处理序列输入的模型。只需一行代码,你就将图像分类 模型转换为视频分类模型。 from keras.layers import TimeDistributed # 输入张量是 20 个时间步的序列,每一个时间为一个 784 维的向量 上的一条新闻标题有多少转发和点赞数。模型的 主要输入将是新闻标题本身,即一系列词语,但是为了增添趣味,我们的模型还添加了其他的 辅助输入来接收额外的数据,例如新闻标题的发布的时间等。该模型也将通过两个损失函数进 行监督学习。较早地在模型中使用主损失函数,是深度学习模型的一个良好正则方法。 模型结构如下图所示: 让我们用函数式 API 来实现它。 主要输入接收新闻标题本身,即一个整数序列(每个整数编码一个词)。这些整数在
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    device_map="auto", attn_implementation="flash_attention_2", ) 为了解决下载问题,我们建议您尝试从 ModelScope 进行下载,只需将上述代码的第一行更改为以下内容: from modelscope import AutoModelForCausalLM, AutoTokenizer 借助 TextStreamer ,chat 的流式模式变得非 max_new_tokens=512, streamer=streamer, ) 除了使用 TextStreamer 之外,我们还可以使用 TextIteratorStreamer ,它将可打印的文本存储在一 个队列中,以便下游应用程序作为迭代器来使用: # Repeat the code above before model.generate() # Starting here, we add streamer you are."}, {"role": "assistant", "content": "I am a large language model named Qwen..."} ] 然后只需通过一行代码运行校准过程: model.quantize(tokenizer, quant_config=quant_config, calib_data=data) 最后,保存量化模型: 14 Chapter
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    练周期模型融合 • 模型结构训练与推理兼容:在线PS与离线PS模型结构兼容,自动模型参数转换 • 稳定性优化 • 模型快照:基于ps-scheduler的周期模型版本探测与保存,模型稀疏化分片存储 • 冷备容灾:基于checkpoint机制(Local模式&Remote模式),实现参数服务的高可用,支持基于模型的异构集群迁移,支持集 群扩缩容 • 性能优化 • 通信优化:数据请求(P 引起的性能损耗,性能提升3-5倍 • 分区优化:支持多种分区策略(RANGE/HASH/MOD),解决数据倾斜导致的流量热点瓶颈问题,性能提升2-5倍 • 存储优化:自定义存储方式(ByRow&ByKey),基于row进行矩阵压缩存储,参数内存占用减少90% 3 在线机器学习-参数服务器 模型验证 离线训练 实时训练 模型训练 模型部署 在线服务 离线验证 在线发布 在线验证 在线一致性/ DSSM/FM/FF M生成博主与物 料向量,采用 向量进行召回 特征向量化:Item2vec 向量索引:FM/FFM/ DSSM 模型召回:DIN/DIEN/TDM 模型召回 融入用户近期互动行 为的深度模型召回 单目标:LR->W&D->FM->DeepFM 多目标:点击FM+互动FM 排序损失:DeepFM+Pair-Wise Rank Loss 多目标 融合点击模型和 互动模型
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 超大规模深度学习在美团的应用-余建平

    模型可变计算路径  运行阶段  计算图裁剪 模型训练框架 • 应用场景——离线预计算  模型召回,ANN检索  粗排模型,降低线上计算量 • 分布式Sharding  模型分片存储,支持超大规模模型  数据并行计算,加速Optimizer计算 • 低频特征过滤  Counting Bloom Filter  概率方式 • 模型数据通路  Base + Delta方式 PS的参数放置策略 • Ps分布式分片的均衡,避免分片大小不一致  NN网络矩阵按行切分,解决请求包不均衡问题  特征按照Hash方式分布式存储 • 模型并行调超参  grid search  random search PS的多模型训练 • 提高内存使用效率  model group内共享特征key的存储 • 超大规模模型 -> 高扇出的分布式PS • 长尾效应:单个分片的抖动(网络、CPU)对请求影响变大 N PS Req … … reply 1 reply 2 reply N … 超过t Backup Request Cancel Request 流式模型的通路 • 持久化存储  本地disk存储,持久化对齐kafka的数据 • PS快速failover  Compaction机制,降低load数据量 • Online Learning对数据流的要求  不重不丢:重复的数据会使模型有偏,数据的缺失
    0 码力 | 41 页 | 5.96 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-11机器学习-降维

    下图所示的S曲线(不同颜色的图像表示不同类别的数据),t-SNE表现更好 。因为t-SNE主要是关注数据的局部结构。 11 1.降维概述 降维的优缺点 降维的优点: • 通过减少特征的维数,数据集存储所需的空间也相应减少,减少了特征维数所需的计算 训练时间; • 数据集特征的降维有助于快速可视化数据; • 通过处理多重共线性消除冗余特征。 降维的缺点: • 由于降维可能会丢失一些数据; (2) 基于特征值分解协方差矩阵实现PCA算法 39 (1)基于SVD分解协方差矩阵实现PCA算法 3.PCA(主成分分析) PCA 减少?维到?维: 设有?条?维数据,将原始数据按列组成?行?列矩阵? 第一步是均值归一化。我们需要计算出所有特征的均值,然后令 ?? = ?? − ??。(??为均值)。如 果特征是在不同的数量级上,我们还需要将其除以标准差 ?2。 第二步是计算协方差矩阵(covariance 则是一个对角阵,对角线上的元素就是特征值。 备注:对于正交矩阵?,有?−1= ?T 43 (2) 基于特征值分解协方差矩阵实现PCA算法 3.PCA(主成分分析) 设有?条?维数据,将原始数据按列组成?行?列矩阵? 1)均值归一化。我们需要计算出所有特征的均值,然后令 ?? = ?? − ??。(??为均值)。 如果特征是在不同的数量级上,我们还需要将其除以标准差 ?2。 2)计算协方差矩阵?。
    0 码力 | 51 页 | 3.14 MB | 1 年前
    3
共 46 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
动手深度学习v2PyTorch深度学习机器课程温州大学01引言TensorFlowonYarn遇上数据Keras基于PythonAI模型千问qwen中文文档微博在线实践黄波超大大规规模大规模超大规模美团应用建平11降维
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩