 机器学习课程-温州大学-线性代数回顾2021年07月 机器学习-线性代数回顾 黄海广 副教授 2 目录 01 行列式 02 矩阵 03 向量 06 二次型 05 矩阵的特征值和特征向量 04 线性方程组 3 1.行列式 01 行列式 02 矩阵 03 向量 06 二次型 05 矩阵的特征值和特征向量 04 线性方程组 4 (1) 设? = 05 矩阵的特征值和特征向量 04 线性方程组 7 ? × ?个数???排成?行?列的表格 ?11 ?12 ⋯ ?1? ?21 ?22 ⋯ ?2? ⋯ ⋯ ⋯ ⋯ ⋯ ??1 ??2 ⋯ ??? 称为矩阵, 简记为?,或者 ??? ?×? 。若? = ?,则称?是?阶矩阵或?阶方阵。 2.矩阵 矩阵 8 矩阵的线性运算 2.矩阵 1.矩阵的加法 设? = ( 矩阵的特征值和特征向量 04 线性方程组 15 3.向量 1.有关向量组的线性表示 (1) ?1, ?2, ⋯ , ??线性相关 ⇔至少有一个向量可以用其余向量线性表示。 (2) ?1, ?2, ⋯ , ??线性无关,?1, ?2, ⋯ , ??,?线性相关 ⇔ ?可以由?1, ?2, ⋯ , ??唯一线性表示。 (3) ?可以由?1, ?2, ⋯ , ??线性表示 ⇔ ?(?1, ?20 码力 | 39 页 | 856.89 KB | 1 年前3 机器学习课程-温州大学-线性代数回顾2021年07月 机器学习-线性代数回顾 黄海广 副教授 2 目录 01 行列式 02 矩阵 03 向量 06 二次型 05 矩阵的特征值和特征向量 04 线性方程组 3 1.行列式 01 行列式 02 矩阵 03 向量 06 二次型 05 矩阵的特征值和特征向量 04 线性方程组 4 (1) 设? = 05 矩阵的特征值和特征向量 04 线性方程组 7 ? × ?个数???排成?行?列的表格 ?11 ?12 ⋯ ?1? ?21 ?22 ⋯ ?2? ⋯ ⋯ ⋯ ⋯ ⋯ ??1 ??2 ⋯ ??? 称为矩阵, 简记为?,或者 ??? ?×? 。若? = ?,则称?是?阶矩阵或?阶方阵。 2.矩阵 矩阵 8 矩阵的线性运算 2.矩阵 1.矩阵的加法 设? = ( 矩阵的特征值和特征向量 04 线性方程组 15 3.向量 1.有关向量组的线性表示 (1) ?1, ?2, ⋯ , ??线性相关 ⇔至少有一个向量可以用其余向量线性表示。 (2) ?1, ?2, ⋯ , ??线性无关,?1, ?2, ⋯ , ??,?线性相关 ⇔ ?可以由?1, ?2, ⋯ , ??唯一线性表示。 (3) ?可以由?1, ?2, ⋯ , ??线性表示 ⇔ ?(?1, ?20 码力 | 39 页 | 856.89 KB | 1 年前3
 动手学深度学习 v2.048 2.2.3 转换为张量格式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.3 线性代数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.3.11 关于线性代数的更多信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.4 微积分 . . . . . . . . 81 2.7.1 查找模块中的所有函数和类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.7.2 查找特定函数和类的用法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3 线性神经网络 85 3.1 线性回归 . . .0 码力 | 797 页 | 29.45 MB | 1 年前3 动手学深度学习 v2.048 2.2.3 转换为张量格式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.3 线性代数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.3.11 关于线性代数的更多信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.4 微积分 . . . . . . . . 81 2.7.1 查找模块中的所有函数和类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.7.2 查找特定函数和类的用法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3 线性神经网络 85 3.1 线性回归 . . .0 码力 | 797 页 | 29.45 MB | 1 年前3
 机器学习课程-温州大学-01机器学习-引言感知机、支持向量机、KNN、AdaBoost、K-means以及神经网络均属于非概 率模型。 对于非概率模型而言,可按照判别函数线性与否分成线性模型与非线性模型。 感知机、线性支持向量机、KNN、K-means是线性模型。 核支持向量机、AdaBoost、神经网络属于非线性模型。 机器学习的概念-模型 22 1. 0-1损失函数(0-1 Loss Function) L ?, ? ? = ቊ1 chi khai 喜 Ψ ψ psi psai 普西 Ω ω omega omiga 欧米 29 3. 机器学习的背景知识-数学基础 高等数学 导数、微分、泰勒公式…… 线性代数 向量、矩阵、行列式、秩、线性方程组、特征值和特征向量…… 概率论与数理统计 随机事件和概率、概率的基本性质和公式、常见分布、期望、协 方差…… 30 高等数学-导数 导数(Derivative),也叫导函数值。又名微商, + 1 ?! ?? + ?(??) 2) ln(1 + ?) = ? − 1 2 ?2 + 1 3 ?3 − ⋯ + (−1)?−1?? ? + ?(??) 高等数学-泰勒公式 38 线性代数-行列式 设? = ??? ?×?,则:??1??1 + ??2??2 + ⋯ + ?????? = ቊ ? , ? = ? 0, ? ≠ ? 或?1??1? + ?2??2? + ⋯ +0 码力 | 78 页 | 3.69 MB | 1 年前3 机器学习课程-温州大学-01机器学习-引言感知机、支持向量机、KNN、AdaBoost、K-means以及神经网络均属于非概 率模型。 对于非概率模型而言,可按照判别函数线性与否分成线性模型与非线性模型。 感知机、线性支持向量机、KNN、K-means是线性模型。 核支持向量机、AdaBoost、神经网络属于非线性模型。 机器学习的概念-模型 22 1. 0-1损失函数(0-1 Loss Function) L ?, ? ? = ቊ1 chi khai 喜 Ψ ψ psi psai 普西 Ω ω omega omiga 欧米 29 3. 机器学习的背景知识-数学基础 高等数学 导数、微分、泰勒公式…… 线性代数 向量、矩阵、行列式、秩、线性方程组、特征值和特征向量…… 概率论与数理统计 随机事件和概率、概率的基本性质和公式、常见分布、期望、协 方差…… 30 高等数学-导数 导数(Derivative),也叫导函数值。又名微商, + 1 ?! ?? + ?(??) 2) ln(1 + ?) = ? − 1 2 ?2 + 1 3 ?3 − ⋯ + (−1)?−1?? ? + ?(??) 高等数学-泰勒公式 38 线性代数-行列式 设? = ??? ?×?,则:??1??1 + ??2??2 + ⋯ + ?????? = ቊ ? , ? = ? 0, ? ≠ ? 或?1??1? + ?2??2? + ⋯ +0 码力 | 78 页 | 3.69 MB | 1 年前3
 机器学习课程-温州大学-01深度学习-引言chi khai 喜 Ψ ψ psi psai 普西 Ω ω omega omiga 欧米 30 3. 深度学习的背景知识-数学基础 高等数学 导数、微分、泰勒公式…… 线性代数 向量、矩阵、行列式、秩、线性方程组、特征值和特征向量…… 概率论与数理统计 随机事件和概率、概率的基本性质和公式、常见分布、期望、协 方差…… 31 高等数学-导数 导数(Derivative),也叫导函数值。又名微商, + 1 ?! ?? + ?(??) 2) ln(1 + ?) = ? − 1 2 ?2 + 1 3 ?3 − ⋯ + (−1)?−1?? ? + ?(??) 高等数学-泰勒公式 39 线性代数-行列式 设? = ??? ?×?,则:??1??1 + ??2??2 + ⋯ + ?????? = ቊ ? , ? = ? 0, ? ≠ ? 或?1??1? + ?2??2? + ⋯ + , ? ∈ ℝ?×?, det(??) = det(?)det(?) ⚫ 当且仅当?为奇异方阵时,det(?) = 0 ⚫ 当?为非奇异方阵时,det(?−1) = 1/det(?) 40 线性代数-矩阵 矩阵:? × ?个数???排成?行?列的表格 ?11 ?12 ⋯ ?1? ?21 ?22 ⋯ ?2? ⋯ ⋯ ⋯ ⋯ ⋯ ??1 ??2 ⋯ ??? 称为矩阵,简记为?, 或者0 码力 | 80 页 | 5.38 MB | 1 年前3 机器学习课程-温州大学-01深度学习-引言chi khai 喜 Ψ ψ psi psai 普西 Ω ω omega omiga 欧米 30 3. 深度学习的背景知识-数学基础 高等数学 导数、微分、泰勒公式…… 线性代数 向量、矩阵、行列式、秩、线性方程组、特征值和特征向量…… 概率论与数理统计 随机事件和概率、概率的基本性质和公式、常见分布、期望、协 方差…… 31 高等数学-导数 导数(Derivative),也叫导函数值。又名微商, + 1 ?! ?? + ?(??) 2) ln(1 + ?) = ? − 1 2 ?2 + 1 3 ?3 − ⋯ + (−1)?−1?? ? + ?(??) 高等数学-泰勒公式 39 线性代数-行列式 设? = ??? ?×?,则:??1??1 + ??2??2 + ⋯ + ?????? = ቊ ? , ? = ? 0, ? ≠ ? 或?1??1? + ?2??2? + ⋯ + , ? ∈ ℝ?×?, det(??) = det(?)det(?) ⚫ 当且仅当?为奇异方阵时,det(?) = 0 ⚫ 当?为非奇异方阵时,det(?−1) = 1/det(?) 40 线性代数-矩阵 矩阵:? × ?个数???排成?行?列的表格 ?11 ?12 ⋯ ?1? ?21 ?22 ⋯ ?2? ⋯ ⋯ ⋯ ⋯ ⋯ ??1 ??2 ⋯ ??? 称为矩阵,简记为?, 或者0 码力 | 80 页 | 5.38 MB | 1 年前3
 Keras: 基于 Python 的深度学习库些代码紧凑,易于调试,并且易于扩展。 1.3 快速开始:30 秒上手 Keras Keras 的核心数据结构是 model,一种组织网络层的方式。最简单的模型是 Sequential 顺 序模型,它是由多个网络层线性堆叠的栈。对于更复杂的结构,你应该使用 Keras 函数式 API, 它允许构建任意的神经网络图。 Sequential 顺序模型如下所示: from keras.models import Sequential NVIDIA、优步、苹果(通过 CoreML)等。 快速开始 8 3 快速开始 3.1 Sequential 顺序模型指引 3.1.1 开始使用 Keras 顺序 (Sequential) 模型 顺序模型是多个网络层的线性堆叠。 你可以通过将层的列表传递给 Sequential 的构造函数,来创建一个 Sequential 模型: from keras.models import Sequential from 有状态的循环神经网络模型中,在一个 batch 的样本处理完成后,其内部状态(记忆)会被记录 并作为下一个 batch 的样本的初始状态。这允许处理更长的序列,同时保持计算复杂度的可控 性。 你可以在 FAQ 中查找更多关于 stateful RNNs 的信息。 from keras.models import Sequential from keras.layers import LSTM, Dense0 码力 | 257 页 | 1.19 MB | 1 年前3 Keras: 基于 Python 的深度学习库些代码紧凑,易于调试,并且易于扩展。 1.3 快速开始:30 秒上手 Keras Keras 的核心数据结构是 model,一种组织网络层的方式。最简单的模型是 Sequential 顺 序模型,它是由多个网络层线性堆叠的栈。对于更复杂的结构,你应该使用 Keras 函数式 API, 它允许构建任意的神经网络图。 Sequential 顺序模型如下所示: from keras.models import Sequential NVIDIA、优步、苹果(通过 CoreML)等。 快速开始 8 3 快速开始 3.1 Sequential 顺序模型指引 3.1.1 开始使用 Keras 顺序 (Sequential) 模型 顺序模型是多个网络层的线性堆叠。 你可以通过将层的列表传递给 Sequential 的构造函数,来创建一个 Sequential 模型: from keras.models import Sequential from 有状态的循环神经网络模型中,在一个 batch 的样本处理完成后,其内部状态(记忆)会被记录 并作为下一个 batch 的样本的初始状态。这允许处理更长的序列,同时保持计算复杂度的可控 性。 你可以在 FAQ 中查找更多关于 stateful RNNs 的信息。 from keras.models import Sequential from keras.layers import LSTM, Dense0 码力 | 257 页 | 1.19 MB | 1 年前3
 【PyTorch深度学习-龙龙老师】-测试版202112知识,体会到知 识是为了解决问题而生的,避免陷入为了学习而学习的窘境。 尽管作者试图将读者的基础要求降到最低,但是人工智能不可避免地需要使用正式化的 数学符号推导,其中涉及到少量的概率与统计、线性代数、微积分等数学知识,一般要求读 者对这些数学知识有初步印象或了解即可。比起理论基础,读者需要有少量的编程经验,特 别是 Python 语言编程经验,显得更加重要,因为本书更侧重于实用性,而不是堆砌公式。 参考文献 第 2 章 回归问题 2.1 神经元模型 2.2 优化方法 2.3 线性模型实战 2.4 线性回归 2.5 参考文献 第 3 章 分类问题 3.1 手写数字图片数据集 3.2 模型构建 3.3 误差计算 3.4 真的解决了吗 3.5 非线性模型 3.6 表达能力 3.7 优化方法 3.8 手写数字图片识别体验 3.9 小结 映射关系??: ? → ?,其中??代表模型函数,?为模型的参数。在训练时,通过计算模型的预 测值??(?)与真实标签?之间的误差来优化网络参数?,使得网络下一次能够预测更精准。常 见的有监督学习有线性回归、逻辑回归、支持向量机、随机森林等。 无监督学习 收集带标签的数据往往代价较为昂贵,对于只有样本?的数据集,算法需 要自行发现数据的模态,这种方式叫作无监督学习。无监督学习中有一类算法将自身作为0 码力 | 439 页 | 29.91 MB | 1 年前3 【PyTorch深度学习-龙龙老师】-测试版202112知识,体会到知 识是为了解决问题而生的,避免陷入为了学习而学习的窘境。 尽管作者试图将读者的基础要求降到最低,但是人工智能不可避免地需要使用正式化的 数学符号推导,其中涉及到少量的概率与统计、线性代数、微积分等数学知识,一般要求读 者对这些数学知识有初步印象或了解即可。比起理论基础,读者需要有少量的编程经验,特 别是 Python 语言编程经验,显得更加重要,因为本书更侧重于实用性,而不是堆砌公式。 参考文献 第 2 章 回归问题 2.1 神经元模型 2.2 优化方法 2.3 线性模型实战 2.4 线性回归 2.5 参考文献 第 3 章 分类问题 3.1 手写数字图片数据集 3.2 模型构建 3.3 误差计算 3.4 真的解决了吗 3.5 非线性模型 3.6 表达能力 3.7 优化方法 3.8 手写数字图片识别体验 3.9 小结 映射关系??: ? → ?,其中??代表模型函数,?为模型的参数。在训练时,通过计算模型的预 测值??(?)与真实标签?之间的误差来优化网络参数?,使得网络下一次能够预测更精准。常 见的有监督学习有线性回归、逻辑回归、支持向量机、随机森林等。 无监督学习 收集带标签的数据往往代价较为昂贵,对于只有样本?的数据集,算法需 要自行发现数据的模态,这种方式叫作无监督学习。无监督学习中有一类算法将自身作为0 码力 | 439 页 | 29.91 MB | 1 年前3
 机器学习课程-温州大学-09机器学习-支持向量机机器学习-支持向量机 黄海广 副教授 2 本章目录 01 支持向量机概述 02 线性可分支持向量机 03 线性支持向量机 04 线性不可分支持向量机 3 1.支持向量机概述 01 支持向量机概述 02 线性可分支持向量机 03 线性支持向量机 04 线性不可分支持向量机 4 1.支持向量机概述 支 持 向 量 机 ( Support Vector learning)方式对数据进行二元分类的广义线性 分类器(generalized linear classifier),其决 策边界是对学习样本求解的最大边距超平面( maximum-margin hyperplane) 。 与逻辑回归和神经网络相比,支持向量机,在学 习复杂的非线性方程时提供了一种更为清晰,更 加强大的方式。 支持向量 距离 5 1.支持向量机概述 硬间隔、软间隔和非线性 SVM 假如 假如数据是完全的线性可分的,那么学习到的模型可以称为硬间隔支持向 量机。换个说法,硬间隔指的就是完全分类准确,不能存在分类错误的情 况。软间隔,就是允许一定量的样本分类错误。 软间隔 硬间隔 线性可分 线性不可分 6 支持向量 1.支持向量机概述 算法思想 找到集合边缘上的若干数据(称为 支持向量(Support Vector)) ,用这些点找出一个平面(称为决 策面),使得支持向量到该平面的0 码力 | 29 页 | 1.51 MB | 1 年前3 机器学习课程-温州大学-09机器学习-支持向量机机器学习-支持向量机 黄海广 副教授 2 本章目录 01 支持向量机概述 02 线性可分支持向量机 03 线性支持向量机 04 线性不可分支持向量机 3 1.支持向量机概述 01 支持向量机概述 02 线性可分支持向量机 03 线性支持向量机 04 线性不可分支持向量机 4 1.支持向量机概述 支 持 向 量 机 ( Support Vector learning)方式对数据进行二元分类的广义线性 分类器(generalized linear classifier),其决 策边界是对学习样本求解的最大边距超平面( maximum-margin hyperplane) 。 与逻辑回归和神经网络相比,支持向量机,在学 习复杂的非线性方程时提供了一种更为清晰,更 加强大的方式。 支持向量 距离 5 1.支持向量机概述 硬间隔、软间隔和非线性 SVM 假如 假如数据是完全的线性可分的,那么学习到的模型可以称为硬间隔支持向 量机。换个说法,硬间隔指的就是完全分类准确,不能存在分类错误的情 况。软间隔,就是允许一定量的样本分类错误。 软间隔 硬间隔 线性可分 线性不可分 6 支持向量 1.支持向量机概述 算法思想 找到集合边缘上的若干数据(称为 支持向量(Support Vector)) ,用这些点找出一个平面(称为决 策面),使得支持向量到该平面的0 码力 | 29 页 | 1.51 MB | 1 年前3
 机器学习课程-温州大学-02-数学基础回顾-0.机器学习的数学基础整理(国内教材)............................................................................................... 1 线性代数 ................................................................................................ ′2(?)]3 2 ⁄ 17.曲率半径 曲线在点?处的曲率?(? ≠ 0)与曲线在点?处的曲率半径?有如下关系:? = 1 ? 机器学习的数学基础 9 线性代数 行列式 1.行列式按行(列)展开定理 (1) 设? = (???)?×?,则:??1??1 + ??2??2 + ⋯ + ?????? = { |?|,? = ? 0, ? ≠ ? ?21 ?22 ⋯ ?2? ⋯ ⋯ ⋯ ⋯ ⋯ ??1 ??2 ⋯ ???] 称为矩阵,简记为?, 或者(???)?×? 。若? = ?,则称?是?阶矩阵或?阶方阵。 矩阵的线性运算 1.矩阵的加法 设? = (???), ? = (???)是两个? × ?矩阵,则? × ? 矩阵? = (???) = ??? + ???称为矩阵?与? 的和,记为? + ? =0 码力 | 31 页 | 1.18 MB | 1 年前3 机器学习课程-温州大学-02-数学基础回顾-0.机器学习的数学基础整理(国内教材)............................................................................................... 1 线性代数 ................................................................................................ ′2(?)]3 2 ⁄ 17.曲率半径 曲线在点?处的曲率?(? ≠ 0)与曲线在点?处的曲率半径?有如下关系:? = 1 ? 机器学习的数学基础 9 线性代数 行列式 1.行列式按行(列)展开定理 (1) 设? = (???)?×?,则:??1??1 + ??2??2 + ⋯ + ?????? = { |?|,? = ? 0, ? ≠ ? ?21 ?22 ⋯ ?2? ⋯ ⋯ ⋯ ⋯ ⋯ ??1 ??2 ⋯ ???] 称为矩阵,简记为?, 或者(???)?×? 。若? = ?,则称?是?阶矩阵或?阶方阵。 矩阵的线性运算 1.矩阵的加法 设? = (???), ? = (???)是两个? × ?矩阵,则? × ? 矩阵? = (???) = ??? + ???称为矩阵?与? 的和,记为? + ? =0 码力 | 31 页 | 1.18 MB | 1 年前3
 机器学习课程-温州大学-02-数学基础回顾-1.CS229-LinearAlgebra原文作者:Zico Kolter,修改:Chuong Do, Tengyu Ma 翻译:黄海广 备注:请关注github的更新,线性代数和概率论已经更新完毕。 CS229 机器学习课程复习材料-线性代数 CS229 机器学习课程复习材料-线性代数 线性代数复习和参考 1. 基础概念和符号 1.1 基本符号 2.矩阵乘法 2.1 向量-向量乘法 2.2 矩阵-向量乘法 2 3.6 线性相关性和秩 3.7 方阵的逆 3.8 正交阵 3.9 矩阵的值域和零空间 3.10 行列式 3.11 二次型和半正定矩阵 3.12 特征值和特征向量 3.13 对称矩阵的特征值和特征向量 4.矩阵微积分 4.1 梯度 4.2 黑塞矩阵 4.3 二次函数和线性函数的梯度和黑塞矩阵 4.4 最小二乘法 4.5 行列式的梯度 4.6 特征值优化 线性代数复习和参考 1. 基础概念和符号 线性代数提供了一种紧凑地表示和操作线性方程组的方法。 例如,以下方程组: 这是两个方程和两个变量,正如你从高中代数中所知,你可以找到 和 的唯一解(除非方程以某 种方式退化,例如,如果第二个方程只是第一个的倍数,但在上面的情况下,实际上只有一个唯一 解)。 在矩阵表示法中,我们可以更紧凑地表达: 我们可以看到,这种形式的线性方程有许多优点(比如明显地节省空间)。0 码力 | 19 页 | 1.66 MB | 1 年前3 机器学习课程-温州大学-02-数学基础回顾-1.CS229-LinearAlgebra原文作者:Zico Kolter,修改:Chuong Do, Tengyu Ma 翻译:黄海广 备注:请关注github的更新,线性代数和概率论已经更新完毕。 CS229 机器学习课程复习材料-线性代数 CS229 机器学习课程复习材料-线性代数 线性代数复习和参考 1. 基础概念和符号 1.1 基本符号 2.矩阵乘法 2.1 向量-向量乘法 2.2 矩阵-向量乘法 2 3.6 线性相关性和秩 3.7 方阵的逆 3.8 正交阵 3.9 矩阵的值域和零空间 3.10 行列式 3.11 二次型和半正定矩阵 3.12 特征值和特征向量 3.13 对称矩阵的特征值和特征向量 4.矩阵微积分 4.1 梯度 4.2 黑塞矩阵 4.3 二次函数和线性函数的梯度和黑塞矩阵 4.4 最小二乘法 4.5 行列式的梯度 4.6 特征值优化 线性代数复习和参考 1. 基础概念和符号 线性代数提供了一种紧凑地表示和操作线性方程组的方法。 例如,以下方程组: 这是两个方程和两个变量,正如你从高中代数中所知,你可以找到 和 的唯一解(除非方程以某 种方式退化,例如,如果第二个方程只是第一个的倍数,但在上面的情况下,实际上只有一个唯一 解)。 在矩阵表示法中,我们可以更紧凑地表达: 我们可以看到,这种形式的线性方程有许多优点(比如明显地节省空间)。0 码力 | 19 页 | 1.66 MB | 1 年前3
 PyTorch OpenVINO 开发实战系列教程第一篇���� 7 1.5 线性回归预测������������������������������������������������������������������������������������������������������������������������������������������������������������� 9 1.5.1 线性回归过程 �������� ����������������������������������������������������������������������������������������� 9 1.5.2 线性回归代码演示 �������������������������������������������������������������������������������������������� 参见官方的开发文档。 1.5 线性回归预测 上一小节介绍了 Pytorch 框架各种基础操作,本节我们学习一 个堪称是深度学习版本的 Hello World 程序,帮助读者理解模 型训练与参数优化等基本概念,开始我们学习 Pytorch 框架编 程的愉快旅程。 1.5.1 线性回归过程 很坦诚的说,有很多资料把线性回归表述的很复杂、一堆公式 推导让初学者望而生畏,无法准确快速理解线性回归,这里作0 码力 | 13 页 | 5.99 MB | 1 年前3 PyTorch OpenVINO 开发实战系列教程第一篇���� 7 1.5 线性回归预测������������������������������������������������������������������������������������������������������������������������������������������������������������� 9 1.5.1 线性回归过程 �������� ����������������������������������������������������������������������������������������� 9 1.5.2 线性回归代码演示 �������������������������������������������������������������������������������������������� 参见官方的开发文档。 1.5 线性回归预测 上一小节介绍了 Pytorch 框架各种基础操作,本节我们学习一 个堪称是深度学习版本的 Hello World 程序,帮助读者理解模 型训练与参数优化等基本概念,开始我们学习 Pytorch 框架编 程的愉快旅程。 1.5.1 线性回归过程 很坦诚的说,有很多资料把线性回归表述的很复杂、一堆公式 推导让初学者望而生畏,无法准确快速理解线性回归,这里作0 码力 | 13 页 | 5.99 MB | 1 年前3
共 41 条
- 1
- 2
- 3
- 4
- 5













