积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(18)机器学习(18)

语言

全部中文(简体)(17)英语(1)

格式

全部PDF文档 PDF(18)
 
本次搜索耗时 0.068 秒,为您找到相关结果约 18 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    如下: 1)torch.nn 包,里面主要包含构建卷积神经网络的各种算子 操作,主要包括卷积操作(Conv2d、Conv1d、Conv3d)激 活函数、序贯模型 (Sequential)、功能函数 (functional)、损 失功能、支持自定义的模型类(Module)等。通过它们就可 以实现大多数的模型结构搭建与生成。 2)torch.utils 包,里面主要包括训练模型的输入数据处理类、 点与性能相关的组件功能。重要的类有数据集类(Dataset), 数据加载类 (DataLoader)、自定义编程的可视化支持组件 tensorboard 相关类。 3)torch 开头的一些包与功能,主要包括支持模型导出功能 的 torch.onnx 模块、优化器 torch.optim 模块、支持 GPU 训 练 torch.cuda 模块,这些都是会经常用的。 4)此外本书当中还会重点关注的 Pytorch 的开发环境搭建十分的简洁,它的依赖只有 Python 语 言 SDK, 只 要 有 了 Python 语 言 包 支 持, 无 论 是 在 windows 平台、ubuntu 平台还是 Mac 平台都靠一条命令 行就可以完成安装。首先是安装 Python 语言包支持,当前 Pytorch 支持的 Python 语言版本与系统对应列表如下: 表 -1(参考 Pytorch 官网与
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别

    准备模型开发环境 • 生成验证码数据集 • 输入与输出数据处理 • 模型结构设计 • 模型损失函数设计 • 模型训练过程分析 • 模型部署与效果演示 第六部分 目录 准备模型开发环境 第三方依赖包 数据集生成 • Pillow • captcha 模型可视化 • pydot 模型服务部署 • flask $ pip install Pillow captcha pydot
    0 码力 | 51 页 | 2.73 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    法提供的地方提供见解。 有时,为了避免不必要的重复,我们将本书中经常导入和引用的函数、类等封装在d2l包中。对于要保存到包 中的任何代码块,比如一个函数、一个类或者多个导入,我们都会标记为#@save。我们在 16.6节 中提供了这 些函数和类的详细描述。d2l软件包是轻量级的,仅需要以下软件包和模块作为依赖项: #@save import collections import hashlib da.html 9 conda create --name d2l python=3.9 -y 现在激活 d2l 环境: conda activate d2l 安装深度学习框架和d2l软件包 在安装深度学习框架之前,请先检查计算机上是否有可用的GPU。例如可以查看计算机是否装有NVIDIA GPU并已安装CUDA9。如果机器没有任何GPU,没有必要担心,因为CPU在前几章完全够用。但是,如果想 我们可以按如下方式安装PyTorch的CPU或GPU版本: pip install torch==1.12.0 pip install torchvision==0.13.0 我们的下一步是安装d2l包,以方便调取本书中经常使用的函数和类: pip install d2l==0.17.6 下载 D2L Notebook 接下来,需要下载这本书的代码。可以点击本书HTML页面顶部的“Jupyter
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    年 10 月 19 日 预览版202112 声 明 得益于简洁优雅的设计理念,基于动态图的 PyTorch 框架在学术圈广受好评,绝大多数 最新算法是基于 PyTorch 实现的,众多的第三方 AI 框架应用,例如 mmdetection、mmaction2、 transformer、speechbrain 等均以 PyTorch 为基础开发,可见掌握 PyTorch 框架在人工智能行 业中的重要地位。 1-download- archive,这里选择使用 CUDA 10.1 版本(读者可根据需求自行选择最新版),依次选择 Windows 平台,x86_64 架构,10 系统,exe(local)本地安装包,再选择 Download 即可下载 CUDA 安装软件。下载完成后,打开安装软件。如图 1.23 所示,选择“Custom”选项, 点击 NEXT 按钮进入图 1.26 安装程序选择列表,在这里选择需要安装和取消不需要安装 ;对于多元函数的偏导 数,记为 ?? ??1 , ?? ??2 , ⋯等。偏导数是导数的特例,也没有方向。 考虑本质上为多元函数的神经网络模型,比如 shape 为[784, 256]的权值矩阵?,它包 含了784 × 256个连接权值?,我们需要求出784 × 256个偏导数。需要注意的是,在数学 表达习惯中,一般要讨论的自变量记为?,但是在神经网络中,?一般用来表示输入,比如 图片、文本、语音数据等,网络的自变量是网络参数集
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    Tensors张量 02 Autograd自动求导 03 神经网络 04 训练一个分类器 27 3. 神经网络 可以使用torch.nn包来构建神经网络. 你已知道autograd包,nn包依赖autograd 包来定义模型并求导.一个nn.Module包含各个层和一个forward(input)方法,该 方法返回output。 典型的神经网络 28  神经网络关键组件及相互关系 在PyTorch中,包nn 完成了同样的功能。nn包中定义一组大致等价于层的模块。 一个模块接受输入的tesnor,计算输出的tensor,而且 还保存了一些内部状态比 如需要学习的tensor的参数等。nn包中也定义了一组损失函数(loss functions) ,用来训练神经网络。 38 4. 训练一个分类器 torch.optim # 使用optim包定义优化器(Optimi zer)。Optimizer将会为我们更新模型的 权重。 # 这里我们使用Adam优化方法;optim包还包含了许多别的优化算法。 # Adam构造函数的第一个参数告诉优化器应该更新哪些张量。 learning_rate = 1e-4 optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) 39 参考文献 1. IAN
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
  • pdf文档 pytorch 入门笔记-03- 神经网络

    993 来源网站:链滴 许可协议:署名-相同方式共享 4.0 国际 (CC BY-SA 4.0) 前言 本节主要内容是如何使用 torch.nn 包来构建神经网络。 上一讲已经讲过了 autograd,nn 包依赖 autograd 包来定义模型并求导。 一个 nn.Module 包含各个层和一个 forward(input) 方法,该方法返回 output。 例如: 它是一个简单 将所有参数的梯度缓存清零,然后进行随机梯度的的反向传播: net.zero_grad() out.backward(torch.randn(1, 10)) note torch.nn 只支持小批量输入。整个 torch.nn 包都只支持小批量样本,而不支持单个样本。 例如,nn.Conv2d 接受一个4维的张量,每一维分别是 sSamples * nChannels * Height * Width( 本数 * 通道数 * 神经网络 损失函数 一个损失函数接受一对 (output, target) 作为输入,计算一个值来估计网络的输出和目标值相差多少。 译者注:output 为网络的输出,target 为实际值 nn 包中有很多不同的损失函数。 nn.MSELoss是一个比较简单的损失函数,它计算输出和目标间的均方误差, 例如: output = net(input) target = torch.rand(10)
    0 码力 | 7 页 | 370.53 KB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    "content": "Tell me something about large language models."} ], }' 或者您可以按照下面所示的方式,使用 openai Python 包中的 Python 客户端: from openai import OpenAI # Set OpenAI's API key and API base to use vLLM's API server requirements 中的 bitsandbytes 和 llama-cpp-python ,我建议您直接通过 pip 进行安装。但 是,暂时请不要使用 GGUF,因为其与 TGW 配合时的性能表现不佳。在完成所需包的安装之后,您需要 准备模型,将模型文件或目录放在 “./models“文件夹中。例如,您应按照以下方式将 “transformers“模型目录 Qwen1.5-7B-Chat 放置到相应位置。例如,您应该将 1.7 AWQ 对于量化模型,我们推荐使用 AWQ 结合 AutoAWQ 。AWQ 即激活感知权重量化,是一种针对 LLM 的低比 特权重量化的硬件友好方法。而 AutoAWQ 是一个易于使用的工具包,专门用于 4 比特量化模型。相较于 FP16,AutoAWQ 能够将模型的运行速度提升 3 倍,并将内存需求降低至原来的 1/3。AutoAWQ 实现了激活 感知权重量化(AWQ)算法,可用于 LLM
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-Scikit-learn

    4 1.Scikit-learn概述 Scikit-learn是基于NumPy、 SciPy和 Matplotlib的开源Python机器学习 包,它封装了一系列数据预处理、机器学习算法、模型选择等工具,是数 据分析师首选的机器学习工具包。 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了, scikit-learn简称sklearn,支持包括分类,回归,降维和聚类四大机器学 符号标记 2.Scikit-learn主要用法 y_train | 训练集标签. y_test | 测试集标签. y | 数据标签. 8 2.Scikit-learn主要用法 导入工具包 from sklearn import datasets, preprocessing from sklearn.model_selection import train_test_split from
    0 码力 | 31 页 | 1.18 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-08机器学习-集成学习

    ? ? ??, ??−1 ?? + ?(??: ??) ?0 ? = 0 前向分步算法: ?? ? = ෍ ?=1 ? ?(?: ??) 初始化提升树 第?棵决策树 迭代?次,包 含?棵决策树 的提升树 真实值 损失函数 备注:损失函数选择:如分类用指数损失函数,回归使用平方误差损失。 GBDT算法 18 GBDT算法 ?0 ? ?1 ? ?2 ? ?3 LightGBM 3.XGBoost 27 3.XGBoost XGBoost 是大规模并行 boosting tree 的工具, 它是目前最快最好的开源 boosting tree 工具包 ,比常见的工具包快 10 倍以上。XGBoost 和 GBDT 两者都是 boosting 方法,除了工程实现 、解决问题上的一些差异外,最大的不同就是目 标函数的定义。 28 ??? ? = ෍
    0 码力 | 50 页 | 2.03 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    NumPy是一个用Python实现的科学计算的扩展程序库,包括: 1、一个强大的N维数组对象Array; 2、比较成熟的(广播)函数库; 3、用于整合C/C++和Fortran代码的工具包; 4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy 配合使用更加方便。 NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型、 矢量处理,以及精密的运算库。专 Python模块-SciPy ⚫SciPy SciPy是构建在NumPy的基础之上的,它 提供了许多的操作NumPy的数组的函数。 SciPy是一款方便、易于使用、专为科学和 工程设计的Python工具包,它包括了统计 、优化、整合以及线性代数模块、傅里叶 变换、信号和图像图例,常微分方差的求 解等 scipy.cluster 向量量化 scipy.constants 数学常量 scipy
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
共 18 条
  • 1
  • 2
前往
页
相关搜索词
PyTorchOpenVINO开发实战系列教程第一一篇第一篇TensorFlow快速入门验证验证码识别动手深度学习v2深度学习机器课程温州大学03pytorch笔记神经网络神经网神经网络AI模型千问qwen中文文档Scikitlearn08集成01引言
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩