Keras: 基于 Python 的深度学习库允许简单而快速的原型设计(由于用户友好,高度模块化,可扩展性)。 • 同时支持卷积神经网络和循环神经网络,以及两者的组合。 • 在 CPU 和 GPU 上无缝运行。 查看文档,请访问 Keras.io。 Keras 兼容的 Python 版本: Python 2.7-3.6。 1.2 指导原则 • 用户友好。Keras 是为人类而不是为机器设计的 API。它把用户体验放在首要和中心位置。 Keras 遵循减少认知困难的最佳实践:它提供一致且简单的 API,将常见用例所需的用户 操作数量降至最低,并且在用户错误时提供清晰和可操作的反馈。 • 模块化。模型被理解为由独立的、完全可配置的模块构成的序列或图。这些模块可以以尽 可能少的限制组装在一起。特别是神经网络层、损失函数、优化器、初始化方法、激活函 数、正则化方法,它们都是可以结合起来构建新模型的模块。 • 易扩展性。新的 ropy', optimizer='sgd', metrics=['accuracy']) 如果需要,你还可以进一步地配置你的优化器。Keras 的核心原则是使事情变得相当简单, 同时又允许用户在需要的时候能够进行完全的控制(终极的控制是源代码的易扩展性)。 model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras0 码力 | 257 页 | 1.19 MB | 1 年前3
深度学习在电子商务中的应用程进兴 2017年4月 2 3 苏宁国际美国硅谷研究院 苏宁美国硅谷研究院创 建于2013年11月,其宗旨是建立 高科技人才和专利的蓄水池,推 动苏宁持续地创新和转型,为用 户提供简约完美的用户体验。 硅谷研究院由来自云计 算、大数据、人工智能及深度学 习等不同专业背景的工程师、数 据科学家及分析师组成。目前包 含人工智能、大数据和创新三个 实验室。 4 程进兴,苏宁美国研究院技术总监,斯坦福大学 论文,并有10多项相关领域的专利。 业余爱好: 骑行 个人简介 电子邮箱: jim.cheng@ususing.com 5 议程 • 深度学习与商品搜索 矢量化搜索技术简介 基于词语聚类的矢量化 基于用户会话的矢量化 原型评测结果及效果示例 • 深度学习与聊天机器人 聊天机器人简介 聊天机器人主要模块及架构 深度学习探索 聊天机器人评测结果 6 • 语义词汇差异 理发器, 基于词语聚类的矢量化模型 12 • 把搜索词和商品文档各自作为整体看待,直接学习训练各自的矢量值 • 通过分析用户每次访问的行为顺序, 构建有“搜索词”和“商品文档”组成的句子 • 训练集是采用苏宁易购的用户搜索日志作为来源。在经过数据清理之后,按照搜索的 时间顺序,结合商品的点击,商品放入购物车,商品的购买这些用户行为,而建立的 矢量化训练数据 小米手机4c, 小米手机4s, 142074410 美的冰箱 2700 码力 | 27 页 | 1.98 MB | 1 年前3
经典算法与人工智能在外卖物流调度中的应用经典算法与深度学习 在外卖物流调度中的应用 SPEAKER / 徐明泉 百度外卖首席架构师 引言:外卖配送的背后 2 引言:外卖订单调度系统要考虑的因素 3 订单相关 骑士相关 • 商户、用户位置 • 用户期望时间 • 预计出餐时间.. • 现有订单的配送路线 • 新增订单后配送路线的改变情况 • 历史取送餐速度 • 完成每个订单的预计时间 • 熟悉的区域 • 配送工具 • 装载情况 系统综合考虑各因素进行 订单分组,然后再指派给 合适的骑士 订单云端分组 整体最优分配 调度 系统 4.0 深度学习智能模式 • 出餐时间估算更准,缩短 骑士到店等待时间,节省 运力,提升用户等餐体验 出餐时间预估 深度学习智能 调度 系统 2.0 系统派单模式 • 系统综合考虑配送距离、 骑士运力、期望送达时间 等因素来自动派单 配送距离 期望送达时间 骑士运力 订单相似度 5 路线规划 • 动态规划最优配送路线,且合理 并单,以最低的配送成本最大化 满足用户配送体验。 • 考虑用户期望时间的TSP问题 • 构建模型综合评估用户体验与配 送成本打分 • 采用动态规划和模拟退火算法等 算法,求得最优路线 1 8 时间预估 用户下单 开始配送 骑士到店 骑士取餐 到达用户 完成交付 商户接单 商户出餐 到店时间 出餐时间 送餐时间 交付时间 等餐时间0 码力 | 28 页 | 6.86 MB | 1 年前3
QCon北京2018-《深度学习在微博信息流排序的应用》-刘博72亿,MAU:3.92亿 • 关注流基于关系链接用户与内容 微博Feed流特点介绍—排序原因 Ø 产品特点 • 传播性强 Ø 存在问题 • 信息过载 • 互动性好 • 信噪比低 Ø 排序目标 • 提高用户的信息消费效率 • 提升用户黏性 技术挑战 Ø 规模大 • 用户和Feed内容数量大 Ø 指标量化 • 用户体验 • 内容更新快,实时性要求高 • 内容形式多样、非结构化 互动行为 点击行为 阅读行为 能力标签 兴趣标签 亲密度 自然属性 账号属性 用户特征 关键词 类型属性 topic 内容标签 内容质量 内容特征 组合特征 标签匹配度 用户互动率 协同特征 实时互动率 app互动率 微博内容 关注数据 用户信息 视觉标签 打码日志 社交关系 用户特征 发博流 互动流 曝光流 模型服务 模型训练 模型优化 模型评估 模型预测 Wide & deep 网络架构 • Deep—泛化能力 • Wide—记忆能力 Ø 新增特征 Ø Deep部分依然需要特征工程 • Contextual featues: 用户最 近的平均阅读时长、用户最近 的互动微博 • Wide输入 • conitnues特征离散化 + 手动交叉特征 • Deep输入 • conitnues特征离散化 + 非连续特征embedding 深度学习应用实践0 码力 | 21 页 | 2.14 MB | 1 年前3
超大规模深度学习在美团的应用-余建平超大规模深度学习在美团的应用 余建平 美团点评用户平台研究员 自我介绍 自我介绍 2011年硕士毕业于南京大学计算机科学与技术系。毕业后曾在百度凤巢从事机器学习 工程相关的工作,加入美团后,负责超大规模机器学习系统,从无到有搭建起支持千亿 级别规模的深度学习系统,与推荐、搜索、广告业务深度合作,在算法上提供从召回到 排序的全系统优化方案,在工程上提供离线、近线、在线的全流程解决方案。 MLX平台架构 • 模型场景应用 召回模型 排序模型 美团超大规模模型应用场景 美团推荐 美团搜索 美团广告 美团应用场景简介 • 场景特点 亿级的用户,千万级的O2O商品 海量的用户行为,完整的交易闭环 LBS相关的推荐 • 模型特点 百亿级别的训练数据 千亿级别的模型特征 秒级实时的模型反馈 目录 • 美团超大规模模型场景简介 • 超大规模机器学习MLX 排序模型 超大规模模型的有效性 • VC维理论 描述模型的学习能力:VC维越大模型越复杂,学习能力越强 机器学习能力 = 数据 + 特征 + 模型 • 数据 海量数据: 美团的亿级用户、千万级POI • 特征 大规模离散特征 > 小规模泛化特征 • 模型 DNN > 树模型 > LR 美团超大规模模型应用场景 • 可扩展的机器学习架构 基于Parameter0 码力 | 41 页 | 5.96 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波图片推荐流 正文推荐流 视频推荐流 1 推荐场景 • 推荐 • 在特定场景下,根据用户行为和特点,向用户推荐感兴趣的对象集 • 模型: • 趋势 • 实时化:在线机器学习 • 深度化:深度学习 • 平台化:机器学习平台 2 推荐 • 实时化 • 特征实时化:更及时反馈用户行为,更细粒度刻画用户 • 模型实时化:根据线上样本实时训练模型,及时地反映对象的线上变化 模型推理 预测服务 向量索引 DSSM/FM/FF M生成博主与物 料向量,采用 向量进行召回 特征向量化:Item2vec 向量索引:FM/FFM/ DSSM 模型召回:DIN/DIEN/TDM 模型召回 融入用户近期互动行 为的深度模型召回 单目标:LR->W&D->FM->DeepFM 多目标:点击FM+互动FM 排序损失:DeepFM+Pair-Wise Rank Loss 多目标 融合点击模型和 模型服务/推荐引擎 数据/特征(WeiData) 数据/特征生成 数据/特征存储 数据/特征服务 2 平台架构 用户 微博 曝光/阅读 点击/互动 Feed流排序 数据样本 正样本:曝光有互动 负样本:曝光无互动 样本数据 推荐引擎 业务引擎 用户特征 女性,19-22岁,北京 爱好娱乐,明星,高 活跃…… 特征数据 数据样本 模型参数求解: 损失函数误差最小:0 码力 | 36 页 | 16.69 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112进行了合并,弥补了 PyTorch 在工业部署方面的不足。 目前来看,PyTorch 和 TensorFlow 框架是业界使用最为广泛的两个深度学习框架, TensorFlow 在工业界拥有完备的解决方案和用户基础,但是 TensorFlow 2 和 TensorFlow 1.x 版本并不兼容,导致几乎所有基于 TensorFlow 1.x 开发的算法、框架等都需要修改甚至重 写,因此可以将 TensorFlow Python 语言 的核心软件。用户可以从 https://www.python.org/网站下载最新版本(Python 3.7)的解释器, 像普通的应用软件一样安装完成后,就可以调用 python.exe 程序执行 Python 语言编写的源 代码文件(.py 格式)。 这里选择安装集成了 Python 解释器和虚拟环境等一系列辅助功能的 Anaconda 软件, 用户通过安装 Anaconda 交互式编写代码,也可以利用 Sublime Text、PyCharm 和 VS Code 等综合 IDE 开发中大型 项目。本书推荐使用 PyCharm 编写和调试,使用 VS Code 交互式开发,这两者都可以免费 使用,用户自行下载安装,并配置好 Python 解释器即可。限于篇幅,这里不再赘述。 预览版202112 第 1 章 人工智能绪论 22 1.7 源代码下载 本书配套的源代码和课件等学习资料可以通过0 码力 | 439 页 | 29.91 MB | 1 年前3
《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测数据读入 数据分析 数据 规范化 创建模型 (数据流图) 创建会话 (运行环境) 训练模型 数据分析库:Pandas Pandas 是一个 BSD 开源协议许可的,面向 Python 用户的高性能和易于上手的数 据结构化和数据分析工具。 数据框(Data Frame)是一个二维带标记的数据结构,每列(column)数据类型 可以不同。我们可以将其当作电子表格或数据库表。 数据读入 开源协议许可的,面向 Python 用户的基础科学计算库,在多 维数组上实现了线性代数、傅立叶变换和其他丰富的函数运算。 X y 创建线性回归模型(数据流图) 创建会话(运行环境) 使用 TensorBoard 可视化模型数据流图 TensorBoard 可视化工具 在数据处理过程中,用户通常想要可视化地直观查看数据集分布情况。 在模型设计过程中,用户往往需要分析和检查数据流图是否正确实现。 实现。 在模型训练过程中,用户也常常需要关注模型参数和超参数变化趋势。 在模型测试过程中,用户也往往需要查看准确率和召回率等评估指标。 因此,TensorFlow 项目组开发了机器学习可视化工具 TensorBoard , 它通过展示直观的图形,能够有效地辅助机器学习程序的开发者和使 用者理解算法模型及其工作流程,提升模型开发工作效率。 TensorBoard 可视化训练 TensorBoard0 码力 | 46 页 | 5.71 MB | 1 年前3
谭国富:深度学习在图像审核的应用%以上, 性能CPU上约200ms/张。 微云相册,相册管家 识别标签效果 Ø 微云,相册管家新版本推出智能全自动图片分类,通过上百 种常用图片标签,实现对所有照片的自动识别分类。 Ø 用户上传图片之后即可被智能分类,各大类下包括小类如人 物大类下有合影、女孩、男孩、聚会等小标签。只需要输入 或点击标签即可获取对应类别的图片。 l 图片场景识别技术 SACC2017 OCR识别 卡、车牌、名片等等多个垂直场景 l 证件类OCR识别 l 落地应用 Ø 手Q名片识别,广点通营业执照识别: 在手Q的扫一 扫入口中,可以体验。 Ø Webank身份证识别,主播实名认证: 方便用户快速 的输入证件信息。 SACC2017 OCR识别 – 通用场景和手写 Ø 手写体手机/电话识别准确率可达99%以上。突破业界复杂手写体 识别的难题。 Ø 通用场景准确率和召回率均在88%以上。 WK Job 3 监控/启停 任务调度/资源管理 监控上报 cephfs存储集 群 本地文件系统 数据 模型/日志 client 管理数据 提取模型、 查看日志 提交/管理任务 用户 docker.oa.co m 自动拉取镜像 Redis 冷数据 热任务/监控数据/集群信息 • 任务监控与自动重启 • 分布式多机训练,不可避免遇到由于硬件/网 络波动引起的异常 •0 码力 | 32 页 | 5.17 MB | 1 年前3
《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别Apart,简称CAPTCHA),俗称验证码,是一种区分用户是 计算机或人的公共全自动程序。在CAPTCHA测试中,作为服务器的计算机会自动生成一 个问题由用户来解答。这个问题可以由计算机生成并评判,但是必须只有人类才能解答。 由于计算机无法解答CAPTCHA的问题,所以回答出问题的用户就可以被认为是人类。 一种常用的CAPTCHA测试是让用户输入一个扭曲变形的图片上所显示的文字或数字,扭 曲变形是为了避免被光学字符识别(OCR 一种更现代的CAPTCHA,其不使用扭曲的背景及 字母,而是增加一条曲线来使得图像分割 (segmentation)更困难。 另一种增加图像分割难度的方法为将符号彼此拥挤 在一起,但其也使得真人用户比较难以识别 要求用户识别图片的验证方式,本图为模拟12306 网站的验证界面 验证码(CAPTCHA)生成 https://zh.wikipedia.org/wiki/captcha 使用 Pillow(PIL0 码力 | 51 页 | 2.73 MB | 1 年前3
共 30 条
- 1
- 2
- 3













