积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(32)机器学习(32)

语言

全部中文(简体)(31)英语(1)

格式

全部PDF文档 PDF(32)
 
本次搜索耗时 0.065 秒,为您找到相关结果约 32 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 动手学深度学习 v2.0

    8.5 循环神经网络的从零开始实现 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 8.5.1 独热编码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 8.5.2 初始化模型参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 11.4.1 随机梯度更新 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 11.4.2 动态学习率 . . 词嵌入(word2vec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650 14.1.1 为何独热向量是一个糟糕的选择 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650 14.1.2 自监督的word2vec . . . .
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    中型特征 (⼗) � 2.2 hotkey现象,且训练与推理的 hotkey⾼度重合 百万级稠密 交叉参数 千亿级 稀疏输⼊ 层参数 单个样本命 中的key ⽐如:性别,年龄等取值少的特征; 热⻔⽂章的特征,活跃⽤户的特征 推荐系统 模型上线 在线推理 模型训练 ⽂章 新闻 视频 Item User Item特征 ⽤户反馈 Item推荐 Embedding参数 本⼩时访问过的key 训练框架—基于参数服务器架构的分布式训练框架 TB级模型 分⽚ 存储/更新 百TB数据 分⽚训练 Feature 1: 动态空间 Feature 2.1:短时间内只有部分item和user 被命中,只有部分参数被⽤到 参数按需 获取/更新 Storage 异步训练流⽔线和多级存储:提升性能,降低内存成本 � 问题: � Learner线程中参数拉取和参数更新对性能影响⼤ � 内存成为主要资源瓶颈。由于需要等待全部参数 参数拉 取 训练 参数更新 查询Sparse Table 查询Dense Tensor Reader Learner Worker 返回参数 Request Handler Parameter Server 查询Sparse Table 查询Dense Tensor 更新参数 � 常规训练流⽔线 样本读取 样本解析 参数拉取 参数更新 查询Sparse Table
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    特征实时化:更及时反馈用户行为,更细粒度刻画用户 • 模型实时化:根据线上样本实时训练模型,及时地反映对象的线上变化 模型推理 预测服务 实时特征 实时数据 3 在线机器学习 实时样本 实时模型训练 实时更新参数 Task 训练预处理 Node 实时样本拼接 Node 在线模型训练 Node 离线样本拼接 Node 在线模型评估 Node 模型上线 Node 实时特征处理 Node 参数规模 • 支持百亿特征维度,千亿参数 • 模型版本 • 多模型多版本:多组实验并行执行,提高实验迭代效率 • 在线版本切换:基于ZK的版本感知机制,动态进行版本切换,实现BASE模型的热更新,实时训练与离线训练周期模型融合 • 模型结构训练与推理兼容:在线PS与离线PS模型结构兼容,自动模型参数转换 • 稳定性优化 • 模型快照:基于ps-scheduler的周期模型版本探测与保存,模型稀疏化分片存储 实时训练 模型训练 模型部署 在线服务 离线验证 在线发布 在线验证 在线一致性/ 模型稳定性/… 一键打包 端口探测 蓝绿部署/灰度发布 AUC/准确率/ 召回率/… 流量切换 版本更新 全量发布 … verson1 verson2 … kubenetes/olsubmit 模型库 3 在线机器学习-模型服务部署 • 模型评估 • 模型上线部署前指标评估 • 周期使用验证样本进行点击率预估
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    https://github.com/dragen1860/Deep-Learning-with-PyTorch-book/issues ❑ 本书主页,以及源代码,电子书下载,正式版也会在此同步更新: https://github.com/dragen1860/Deep-Learning-with-PyTorch-book ❑ 姊妹书《TensorFlow 深度学习—深入理解人工智能算法设计》: 则指向函数值减少的方向。利用这一性质,只 需要按照 ?′ = ? − ? ∙ ∇? (2.1) 来迭代更新?′,就能获得越来越小的函数值,其中?用来缩放梯度向量,一般设置为某较小 的值,如 0.01、0.001 等。特别地,对于一维函数,上述向量形式可以退化成标量形式: ?′ = ? − ? ∙ d? d? 通过上式迭代更新?′若干次,这样得到的?′处的函数值?′,总是更有可能比在?处的函数值? 小。 通过式(2 通过式(2.1)方式优化参数的方法称为梯度下降算法,它通过循环计算函数的梯度∇?并 更新待优化参数?,从而得到函数?获得极小值时参数?的最优数值解?∗。值得注意的是, 在深度学习中,一般?表示模型输入,模型的待优化参数一般用?、?、?等符号表示。 现在利用速学的梯度下降算法来求解?∗和?∗参数。这里要最小化的目标是均方误差函 数ℒ: ℒ = 1 ? ∑(??(?) + ? − ?(
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 谭国富:深度学习在图像审核的应用

    相似度:98% 政治人物 不在黑名单 检索结果:林志玲 相似度:99% 在版权库 SACC2017 图片场景识别 l 社交图像分类应用:微云,相册管家 Ø 标签体系:面向社交领域的热词标签200余种, 涵盖人物、风景、人造物、 建筑、动植物、食物等9个大类 。 Ø 技术指标:20个类别平均准确率MAP>90%以上,200种MAP>63%以上, 性能CPU上约200ms/张。 cephfs存储集 群 本地文件系统 数据 模型/日志 client 管理数据 提取模型、 查看日志 提交/管理任务 用户 docker.oa.co m 自动拉取镜像 Redis 冷数据 热任务/监控数据/集群信息 • 任务监控与自动重启 • 分布式多机训练,不可避免遇到由于硬件/网 络波动引起的异常 • 监控任务运行状况,当任务发生异常时,选 择不同的重启策略 • 集群管理与监控
    0 码力 | 32 页 | 5.17 MB | 1 年前
    3
  • pdf文档 经典算法与人工智能在外卖物流调度中的应用

    通过调节迭代树数目、学习倍率、迭代树最大深度、L2正则化参数等进一步避免过拟合 2 获取样本数据 过滤数据 抽取基础特征 组合基础特征,构造组合特征 组合基础特征,构造组合特征 统计基础信息,构造统计特征 独热编码,构造稀疏特征 降维 决策模型 11 • 骑士体验 取餐距离、订单数量、订单组数 • 用户体验 订单剩余时间、骑士完成时间、 订单准时性 • 配送效率 等餐时间、空驶距离、空闲骑士、
    0 码力 | 28 页 | 6.86 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02深度学习-神经网络的编程基础

    梯度下降的每一步中,用到一个样本,在每一次计算之后 便更新参数 ,而不需要首先将所有的训练集求和 小批量梯度下降(Mini-Batch Gradient Descent,MBGD) 梯度下降的每一步中,用到了一定批量的训练样本 12 梯度下降的三种形式 批量梯度下降(Batch Gradient Descent) 梯度下降的每一步中,都用到了所有的训练样本 参数更新 ??: = ?? − ? 1 ? ෍ ?=1 ? ℎ ?(?) − ?(?) ⋅ ?? (?) (同步更新?? ,(j=0,1,...,n )) 梯度 学习率 13梯度下降的三种形式 随机梯度下降(Stochastic Gradient Descent) ? = ? − ? ⋅ ??(?) ?? = ? ??? 1 2 ℎ ? ? − ? ? 2 = 2 ⋅ 1 2 ℎ ? ? − ? ? ⋅ ? 梯度下降的每一步中,用到一个样本,在每一次计算之后便更新参数,而不 需要首先将所有的训练集求和 参数更新 ??: = ?? − ? ℎ ?(?) − ?(?) ??(?) (同步更新?? ,(j=0,1,...,n )) 15 梯度下降的三种形式 小批量梯度下降(Mini-Batch Gradient Descent) 梯度下降的每一步中,用到了一定批量的训练样本 每计算常数?次训练实例,便更新一次参数 ? ?=1(随机梯度下降
    0 码力 | 27 页 | 1.54 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    N 个样本的集合。每一个 batch 的样本都是独立并行处理的。在训练时, 一个 batch 的结果只会用来更新一次模型。 - 一个 batch 的样本通常比单个输入更接近于 总体输入数据的分布,batch 越大就越近似。然而,每个 batch 将花费更长的时间来处理, 并且仍然只更新模型一次。在推理(评估/预测)时,建议条件允许的情况下选择一个尽可 能大的 batch,(因为较大的 batch validation_split=0.2) print(hist.history) 快速开始 33 3.3.14 如何「冻结」网络层? 「冻结」一个层意味着将其排除在训练之外,即其权重将永远不会更新。这在微调模型或使 用固定的词向量进行文本输入中很有用。 您可以将 trainable 参数(布尔值)传递给一个层的构造器,以将该层设置为不可训练的: frozen_layer = Dense(32 Model(x, y) # 在下面的模型中,训练期间不会更新层的权重 frozen_model.compile(optimizer='rmsprop', loss='mse') layer.trainable = True trainable_model = Model(x, y) # 使用这个模型,训练期间 `layer` 的权重将被更新 # (这也会影响上面的模型,因为它使用了同一个网络层实例)
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02机器学习-回归

    梯度下降的每一步中,用到一个样本,在每一次计算之后 便更新参数 ,而不需要首先将所有的训练集求和 小批量梯度下降(Mini-Batch Gradient Descent,MBGD) 梯度下降的每一步中,用到了一定批量的训练样本 14 梯度下降的三种形式 批量梯度下降(Batch Gradient Descent) 梯度下降的每一步中,都用到了所有的训练样本 参数更新 ??: = ?? − ? 1 ? ෍ ?=1 ? ℎ ?(?) − ?(?) ⋅ ?? (?) (同步更新?? ,(j=0,1,...,n )) 梯度 学习率 15梯度下降的三种形式 随机梯度下降(Stochastic Gradient Descent) ? = ? − ? ⋅ ??(?) ?? = ? ??? 1 2 ℎ ? ? − ? ? 2 = 2 ⋅ 1 2 ℎ ? ? − ? ? ⋅ ? 梯度下降的每一步中,用到一个样本,在每一次计算之后便更新参数,而不 需要首先将所有的训练集求和 参数更新 ??: = ?? − ? ℎ ?(?) − ?(?) ??(?) (同步更新?? ,(j=0,1,...,n )) 17 梯度下降的三种形式 小批量梯度下降(Mini-Batch Gradient Descent) 梯度下降的每一步中,用到了一定批量的训练样本 每计算常数?次训练实例,便更新一次参数 ? ?=1(随机梯度下降
    0 码力 | 33 页 | 1.50 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-08机器学习-集成学习

    12 Adaboost算法 算法思想 • 初始化训练样本的权值分布,每个样本具有相同权重; • 训练弱分类器,如果样本分类正确,则在构造下一个训练集中,它的权值 就会被降低;反之提高。用更新过的样本集去训练下一个分类器; • 将所有弱分类组合成强分类器,各个弱分类器的训练过程结束后,加大分 类误差率小的弱分类器的权重,降低分类误差率大的弱分类器的权重。 13 AdaBoost算法 带权重1的训 练集 训练 数据 结合 策略 弱学习器1 基于学习的误差率1 更新学习器权重1 弱学习器2 基于学习的误差率2 更新学习器权重2 弱学习器n 基于学习的误差率n 更新学习器权重n 根据权重1更新样本权重2 根据权重n-1更新样本权重n 强学 习器 相同方式更新…… 15 GBDT算法 GBDT(Gradient Boosting Decision = 0 2 对? = 1,2, … ? (?)计算残差 ??? = ?? − ??−1 ?? , ? = 1,2, … , ? ? 拟合残差???学习一个回归树,得到?(?: ??) ? 更新??(?) = ??−1 ? + ? ?: ?? 3 得到回归提升树 ?? ? = ෍ ?=1 ? ?(?: ??) GBDT算法 21 min ? min ?1 ෍(?? − ?1)2
    0 码力 | 50 页 | 2.03 MB | 1 年前
    3
共 32 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
动手深度学习v2推荐模型基础特点大规规模大规模系统设计微博在线机器实践黄波PyTorch深度学习国富图像审核应用经典算法人工智能人工智能外卖物流调度课程温州大学02神经网络神经网神经网络编程Keras基于Python回归08集成
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩