积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(14)机器学习(14)

语言

全部中文(简体)(13)英语(1)

格式

全部PDF文档 PDF(14)
 
本次搜索耗时 0.071 秒,为您找到相关结果约 14 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 迁移学习-自定义数据集实战

    自定义数据集实战 主讲:龙良曲 Pokemon Go! Pokemon Dataset https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/ Download ▪ 链接: https://pan.baidu.com/s/1V_ZJ7ufjUUFZwD2NHSNMFw
    0 码力 | 16 页 | 719.15 KB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    7.9 反向传播算法实战 7.10 参考文献 第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 8.8 参考文献 第 9 章 过拟合 9.1 模型的容量 9.2 过拟合与欠拟合 9.3 数据集划分 14.3 策略梯度方法 14.4 值函数方法 14.5 Actor-Critic 方法 14.6 小结 14.7 参考文献 第 15 章 自定义数据集 15.1 精灵宝可梦数据集 15.2 自定义数据集加载流程 15.3 宝可梦数据集实战 15.4 迁移学习 15.5 Saved_model 15.6 模型部署 15.7 参考文献 预览版202112 的升级版本 Cafffe2,Caffe2 目前已经融入到 PyTorch 库中。 ❑ Torch 是一个非常优秀的科学计算库,基于较冷门的编程语言 Lua 开发。Torch 灵活性 较高,容易实现自定义网络层,这也是 PyTorch 继承获得的优良基因。但是由于 Lua 语言使用人群较少,Torch 一直未能获得主流应用。 ❑ MXNet 由华人陈天奇和李沐等人开发,是亚马逊公司的官方深度学习框架。采用了
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 5.1.1 自定义块 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 5.1.2 顺序块 3.1 实例化网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 5.4 自定义层 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 5.4 Dagar和唐源将 部分较早版本的MXNet实现分别改编为PyTorch和TensorFlow实现。感谢百度团队将较新的PyTorch实现改 编为PaddlePaddle实现。感谢张帅将更新的LaTeX样式集成进PDF文件的编译。 特别地,我们要感谢这份中文稿的每一位撰稿人,是他们的无私奉献让这本书变得更好。他们的GitHub ID或姓名是(没有特定顺序):alxnorden, avinashingit
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 自定义 Variable 数据与网络训练 19 4.2 准确率的可视化 22 4.3 分类结果的可视化 23 4.4 自定义 Dataset 数据集 25 3 4.5 总结 27 Literature . . . . . . . . . . . . . Dataset 以及 torch.utils.data.DataLoader。 Dataset 存储样本以及它们的标签等信息,Dataset 可以使用预加载的数据集(例如 mnist), 也可以使用自定义的数据集;而 DataLoader 是把样本进行访问和索引的工具,它实现了迭代器 功能,也就是说它可以依次将 batch_size 数量的样本导出。 注意,前面已经导入过的 python 包我们就不再重复导入了。 data import DataLoader 前面说过,Dataset 可以存储自定义数据,我们可以继承 Dataset 类,在子类中实现一些固定 功能的函数,这样就相当于封装了自己的数据为 Dataset 类型。为了方便起见,我们先描述如何 使用预加载数据,然后第二章就开始构建神经网络模型。等第四章我们再描述如何自定义数据集。 我们一次写一个完整的程序来把数据可视化一下: from torchvision
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    29 3.3.6.3 只保存/加载模型的权重 . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.6.4 处理已保存模型中的自定义层(或其他自定义对象) . . . . . . . 30 3.3.7 为什么训练误差比测试误差高很多? . . . . . . . . . . . . . . . . . . . . . . 31 3.3 137 8.2.5 sparse_top_k_categorical_accuracy . . . . . . . . . . . . . . . . . . . . . . 138 8.3 自定义评价函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 9 优化器 Optimizers 159 13.2.4 在新类上微调 InceptionV3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 13.2.5 通过自定义输入 tensor 构建 InceptionV3 . . . . . . . . . . . . . . . . . . . 161 13.3 模型概览 . . . . . . . . . . .
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    (functional)、损 失功能、支持自定义的模型类(Module)等。通过它们就可 以实现大多数的模型结构搭建与生成。 2)torch.utils 包,里面主要包括训练模型的输入数据处理类、 pytorch 自带的模型库、模型训练时候可视化支持组件、检查 点与性能相关的组件功能。重要的类有数据集类(Dataset), 数据加载类 (DataLoader)、自定义编程的可视化支持组件 tensorboard 深度学习主要是针对张量的数据操作、这些数据操作从简单到 复杂、多数都是以矩阵计算的形式存在,最常见的矩阵操作就 是加减乘除、此外卷积、池化、激活、也是模型构建中非常有 用的算子 / 操作数。Pytorch 支持自定义算子操作,可以通过 自定义算子实现复杂的网络结构,构建一些特殊的网络模型。 张量跟算子 / 操作数一起构成了计算图,它们是也是计算图的 基本组成要素。 ● 计算图 深度学习是基于计算图完成模型构建,实现数据在各个计算图 Linear(input_dim, output_dim) def forward(self, x): out = self.linear(x) return out LinearRegressionModel 是一个自定义的类,继承了 torch. nn.Module,其中 torch.nn.Linear 就表示构建了公式 1-1 的 线性模型,重载方法 forward,表示根据模型计算返回预测 结果。 第三步:创建损失功能与优化器
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    7. AWQ 13 Qwen (接上页) ] ) print("Chat response:", chat_response) 1.7.3 使用 AutoAWQ 量化你的模型 如果您希望将自定义模型量化为 AWQ 量化模型,我们建议您使用 AutoAWQ。推荐通过安装源代码来获取 并安装该工具包的最新版本: git clone https://github.com/casper-hansen/AutoAWQ large language models."}, ] ) print("Chat response:", chat_response) 1.8.3 使用 AutoGPTQ 量化你的模型 如果你想将自定义模型量化为 GPTQ 量化模型,我们建议你使用 AutoGPTQ 工具。推荐通过安装源代码的方 式获取并安装最新版本的该软件包。 git clone https://github.com/AutoGPTQ/AutoGPTQ 服务十分简便,该服务可以作为实现 OpenAI API 协议的服 务器进行部署。默认情况下,它将在 http://localhost:8000 启动服务器。您可以通过 --host 和 --port 参数 来自定义地址。请按照以下所示运行命令: python -m vllm.entrypoints.openai.api_server \ --model Qwen/Qwen1.5-7B-Chat 你无需担心
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-numpy使用总结

    + 1 > np.fromfunction(func, (10,)) array([ 1., 2., 3., 4., 1., 2., 3., 4., 1., 2.]) 还可以自定义函数产生ndarray。 fromfunction第一个参数接收计算函数,第二个参数接收数组的形状。 17 ndarray的属性 ndarray的元素具有相同的元素类型。常用的有int(整型),float(浮点型), y=x1<=x2 not_equak(x1,x2[,y]) y=x1>x2 greater(x1,x2[,y]) y=x1>=x2 gerater_equal(x1,x2[,y]) 27 自定义ufunc函数 NumPy提供的标准ufunc函数可以组合出复合的表达式,但是有些情况下, 自己编写的则更为方便。我们可以把自己编写的函数用frompyfunc()转化 成ufunc函数。 > 11) > y = np.array([num_judge(t, 2) for t in x])#列表生成式 array([0, 2, 2, 0, 2, 0, 0, 2, 2, 0, 0]) 28 自定义ufunc函数 使用frompyfunc()进行转化,调用格式如下: > numb_judge = np.frompyfunc(num_judge, 2, 1) > y = numb_judge(x
    0 码力 | 49 页 | 1.52 MB | 1 年前
    3
  • pdf文档 超大规模深度学习在美团的应用-余建平

    外存解决大数据量性能问题  在引擎中流转log key,特征数据在外存 • 分业务场景支持  轻量级predictor:仅支持模型的计算,特征由业务传入,无状态设计  自定义predictor: 提供业务抽象,支持业务自定义逻辑,插件化实现 • 逻辑阶段抽象,业务根据自身需求选择性实现  数据获取: 根据业务的自身逻辑获取特征原始数据  特征抽取: 将特征数据进行转换,转换成模型所需的格式,比如离散化
    0 码力 | 41 页 | 5.96 MB | 1 年前
    3
  • pdf文档 构建基于富媒体大数据的弹性深度学习计算平台

    弹性深度学习平 台 L1 L2 L3 L4 L5 原子API 基础模型 感知层1 API 感知层2 API Vision 综合API 业务逻辑API Argus机器视觉系统 可自定义开发 Argus现有系统提供 Time to be an AI Company
    0 码力 | 21 页 | 1.71 MB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
深度学习PyTorch入门实战63迁移定义数据定义数据深度学习动手v2连接神经网络神经网神经网络pytorchKeras基于PythonOpenVINO开发系列教程第一一篇第一篇AI模型千问qwen中文文档机器课程温州大学numpy使用总结超大大规规模大规模超大规模美团应用建平构建媒体弹性计算平台
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩