 深度学习与PyTorch入门实战 - 08. 索引与切片索引与切片 主讲人:龙良曲 Indexing ▪ dim 0 first select first/last N select by steps select by specific index … select by mask ▪ .masked_select() select by flatten index 下一课时 Tensor变换 Thank You.0 码力 | 10 页 | 883.44 KB | 1 年前3 深度学习与PyTorch入门实战 - 08. 索引与切片索引与切片 主讲人:龙良曲 Indexing ▪ dim 0 first select first/last N select by steps select by specific index … select by mask ▪ .masked_select() select by flatten index 下一课时 Tensor变换 Thank You.0 码力 | 10 页 | 883.44 KB | 1 年前3
 深度学习与PyTorch入门实战 - 34. 动量与lr衰减动量与学习率衰减 主讲人:龙良曲 Tricks ▪ momentum ▪ learning rate decay Momentum https://distill.pub/2017/momentum/ No momentum With appr. momentum momentum Learning rate tunning Learning rate decay Scheme0 码力 | 14 页 | 816.20 KB | 1 年前3 深度学习与PyTorch入门实战 - 34. 动量与lr衰减动量与学习率衰减 主讲人:龙良曲 Tricks ▪ momentum ▪ learning rate decay Momentum https://distill.pub/2017/momentum/ No momentum With appr. momentum momentum Learning rate tunning Learning rate decay Scheme0 码力 | 14 页 | 816.20 KB | 1 年前3
 机器学习课程-温州大学-06深度学习-优化算法1 2023年04月 深度学习-优化算法 黄海广 副教授 2 01 小批量梯度下降 本章目录 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 3 01 小批量梯度下降 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 1.小批量梯度下降 4 小批量梯度下降 小批量梯度下降(Mini-Batch (?) ?? (?) (同步更新?? ,(j=0,1,...,n )) 5 小批量梯度下降 6 01 小批量梯度下降 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 2.优化算法 7 伦敦温度的例子 days temperature ?1 = 40°F ?2 = 49°F ?3 = 45°F ... ?180 = 60°F (1 − ?)??, ?: = ? − ????, ?: = ? − ????, 这样就可以减缓梯度下降的 幅度。 通常情况下:? = 0.9 11 RMSprop 在第?次迭代中,该算法会照常计算当下mini-batch的微分??,??,所以我会 保留这个指数加权平均数,我们用到新符号??? ,而不是??? ,因此??? = ???? + (1 − ?)??2,澄清一下,这个平方的操作是针对这一整个符号的,这样做0 码力 | 31 页 | 2.03 MB | 1 年前3 机器学习课程-温州大学-06深度学习-优化算法1 2023年04月 深度学习-优化算法 黄海广 副教授 2 01 小批量梯度下降 本章目录 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 3 01 小批量梯度下降 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 1.小批量梯度下降 4 小批量梯度下降 小批量梯度下降(Mini-Batch (?) ?? (?) (同步更新?? ,(j=0,1,...,n )) 5 小批量梯度下降 6 01 小批量梯度下降 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 2.优化算法 7 伦敦温度的例子 days temperature ?1 = 40°F ?2 = 49°F ?3 = 45°F ... ?180 = 60°F (1 − ?)??, ?: = ? − ????, ?: = ? − ????, 这样就可以减缓梯度下降的 幅度。 通常情况下:? = 0.9 11 RMSprop 在第?次迭代中,该算法会照常计算当下mini-batch的微分??,??,所以我会 保留这个指数加权平均数,我们用到新符号??? ,而不是??? ,因此??? = ???? + (1 − ?)??2,澄清一下,这个平方的操作是针对这一整个符号的,这样做0 码力 | 31 页 | 2.03 MB | 1 年前3
 机器学习课程-温州大学-06机器学习-KNN算法1 2021年04月 机器学习-KNN算法 黄海广 副教授 2 01 距离度量 02 KNN算法 本章目录 03 KD树划分 04 KD树搜索 3 01 距离度量 02 KNN算法 03 KD树划分 04 KD树搜索 1.距离度量 4 距离度量 欧氏距离(Euclidean distance) ? ?, ? =  )2 10 01 距离度量 02 KNN算法 03 KD树划分 04 KD树搜索 2.KNN算法 11 2.KNN算法 ?近邻法(k-Nearest Neighbor,kNN)是一种比较成熟也是最简单的机器学习算 法,可以用于基本的分类与回归方法。 算法的主要思路: 如果一个样本在特征空间中与?个实例最为相似(即特征空间中最邻近),那么这? 个实例 测值。 12 2.KNN算法 ?近邻法(k-Nearest Neighbor,kNN)是一种比较成熟也是 最简单的机器学习算法,可以用于基本的分类与回归方法。 ?近邻法的三要素: • ?值选择。 • 距离度量。 • 决策规则。 13 2.KNN算法 算法流程如下: 1.计算测试对象到训练集中每个对象的距离 2.按照距离的远近排序 3.选取与当前测试对象最近的k的训练对象,0 码力 | 26 页 | 1.60 MB | 1 年前3 机器学习课程-温州大学-06机器学习-KNN算法1 2021年04月 机器学习-KNN算法 黄海广 副教授 2 01 距离度量 02 KNN算法 本章目录 03 KD树划分 04 KD树搜索 3 01 距离度量 02 KNN算法 03 KD树划分 04 KD树搜索 1.距离度量 4 距离度量 欧氏距离(Euclidean distance) ? ?, ? =  )2 10 01 距离度量 02 KNN算法 03 KD树划分 04 KD树搜索 2.KNN算法 11 2.KNN算法 ?近邻法(k-Nearest Neighbor,kNN)是一种比较成熟也是最简单的机器学习算 法,可以用于基本的分类与回归方法。 算法的主要思路: 如果一个样本在特征空间中与?个实例最为相似(即特征空间中最邻近),那么这? 个实例 测值。 12 2.KNN算法 ?近邻法(k-Nearest Neighbor,kNN)是一种比较成熟也是 最简单的机器学习算法,可以用于基本的分类与回归方法。 ?近邻法的三要素: • ?值选择。 • 距离度量。 • 决策规则。 13 2.KNN算法 算法流程如下: 1.计算测试对象到训练集中每个对象的距离 2.按照距离的远近排序 3.选取与当前测试对象最近的k的训练对象,0 码力 | 26 页 | 1.60 MB | 1 年前3
 深度学习与PyTorch入门实战  - 31. 过拟合与欠拟合0 码力 | 17 页 | 1.31 MB | 1 年前3 深度学习与PyTorch入门实战  - 31. 过拟合与欠拟合0 码力 | 17 页 | 1.31 MB | 1 年前3
 深度学习与PyTorch入门实战 - 28. 激活函数与GPU加速激活函数与GPU加速 主讲人:龙良曲 Leaky ReLU simply SELU softplus GPU accelerated 下一课时 测试 Thank You.0 码力 | 11 页 | 452.22 KB | 1 年前3 深度学习与PyTorch入门实战 - 28. 激活函数与GPU加速激活函数与GPU加速 主讲人:龙良曲 Leaky ReLU simply SELU softplus GPU accelerated 下一课时 测试 Thank You.0 码力 | 11 页 | 452.22 KB | 1 年前3
 房源质量打分中深度学习应用及算法优化-周玉驰2019 KE.COM ALL COPYRIGHTS RESERVED 1 周玉驰 贝壳找房 - 数据智能中心 - 策略算法部 AI选房中深度学习的实践及优化 2019 KE.COM ALL COPYRIGHTS RESERVED 2 2019 KE.COM ALL COPYRIGHTS RESERVED 2 2019 KE.COM ALL COPYRIGHTS RESERVED 3 自我介绍 周玉驰  硕士毕业于中科院  先后就职于华为,百度和医渡云  目前就职于贝壳找房  主要负责两个方向  房源策略算法  房客人关系图谱 扫一扫二维码图案,加我微信 2019 KE.COM ALL COPYRIGHTS RESERVED 4 目录  为什么要做AI选房  如何做AI选房  模型演变历程  实践应用  总结&思考 2019 最近7天浏览量均值 … 时序特征 21维 提取函数 8个 提取特征 168维 2019 KE.COM ALL COPYRIGHTS RESERVED 19 v1.0 - 小结 存在的问题 新上房源与库存房源在行为特征上 差异巨大 引入新上房源,会严重干扰模型  很难兼容新上房源  时序数据特征爆炸 时序特征进行特征提取,得到的特征 数量庞大 随着迭代的进行,新加入特征边际效 应递减,但是成本高0 码力 | 48 页 | 3.75 MB | 1 年前3 房源质量打分中深度学习应用及算法优化-周玉驰2019 KE.COM ALL COPYRIGHTS RESERVED 1 周玉驰 贝壳找房 - 数据智能中心 - 策略算法部 AI选房中深度学习的实践及优化 2019 KE.COM ALL COPYRIGHTS RESERVED 2 2019 KE.COM ALL COPYRIGHTS RESERVED 2 2019 KE.COM ALL COPYRIGHTS RESERVED 3 自我介绍 周玉驰  硕士毕业于中科院  先后就职于华为,百度和医渡云  目前就职于贝壳找房  主要负责两个方向  房源策略算法  房客人关系图谱 扫一扫二维码图案,加我微信 2019 KE.COM ALL COPYRIGHTS RESERVED 4 目录  为什么要做AI选房  如何做AI选房  模型演变历程  实践应用  总结&思考 2019 最近7天浏览量均值 … 时序特征 21维 提取函数 8个 提取特征 168维 2019 KE.COM ALL COPYRIGHTS RESERVED 19 v1.0 - 小结 存在的问题 新上房源与库存房源在行为特征上 差异巨大 引入新上房源,会严重干扰模型  很难兼容新上房源  时序数据特征爆炸 时序特征进行特征提取,得到的特征 数量庞大 随着迭代的进行,新加入特征边际效 应递减,但是成本高0 码力 | 48 页 | 3.75 MB | 1 年前3
 经典算法与人工智能在外卖物流调度中的应用经典算法与深度学习 在外卖物流调度中的应用 SPEAKER / 徐明泉 百度外卖首席架构师 引言:外卖配送的背后 2 引言:外卖订单调度系统要考虑的因素 3 订单相关 骑士相关 • 商户、用户位置 • 用户期望时间 • 预计出餐时间.. • 现有订单的配送路线 • 新增订单后配送路线的改变情况 • 历史取送餐速度 • 完成每个订单的预计时间 • 熟悉的区域 • 配送工具 调度 系统 1.0 外卖订单智能调度要解决的核心问题 7 调度系统算法 1 2 3 4 5 路线规划 • 动态规划最优配送路线,且合理 并单,以最低的配送成本最大化 满足用户配送体验。 • 考虑用户期望时间的TSP问题 • 构建模型综合评估用户体验与配 送成本打分 • 采用动态规划和模拟退火算法等 算法,求得最优路线 1 8 时间预估 用户下单 开始配送 骑士到店 数据,DNN 更好地学习自身有用的特征 - DNN对特征工程要求较低,自身可以学习有用的特征,PCA降维影响较小,但时间复杂度较高 • XGBoost模型 - 采用近似求解算法,找出可能的分裂点,避免选用贪心算法的过高时间复杂度 - 计算采用不同分裂点时,叶子打分函数的增益;并选择增益最高的分裂点,作为新迭代树的最终分裂 节点,构造新的迭代树 - 通过调节迭代树数目、学习倍率、迭代树0 码力 | 28 页 | 6.86 MB | 1 年前3 经典算法与人工智能在外卖物流调度中的应用经典算法与深度学习 在外卖物流调度中的应用 SPEAKER / 徐明泉 百度外卖首席架构师 引言:外卖配送的背后 2 引言:外卖订单调度系统要考虑的因素 3 订单相关 骑士相关 • 商户、用户位置 • 用户期望时间 • 预计出餐时间.. • 现有订单的配送路线 • 新增订单后配送路线的改变情况 • 历史取送餐速度 • 完成每个订单的预计时间 • 熟悉的区域 • 配送工具 调度 系统 1.0 外卖订单智能调度要解决的核心问题 7 调度系统算法 1 2 3 4 5 路线规划 • 动态规划最优配送路线,且合理 并单,以最低的配送成本最大化 满足用户配送体验。 • 考虑用户期望时间的TSP问题 • 构建模型综合评估用户体验与配 送成本打分 • 采用动态规划和模拟退火算法等 算法,求得最优路线 1 8 时间预估 用户下单 开始配送 骑士到店 数据,DNN 更好地学习自身有用的特征 - DNN对特征工程要求较低,自身可以学习有用的特征,PCA降维影响较小,但时间复杂度较高 • XGBoost模型 - 采用近似求解算法,找出可能的分裂点,避免选用贪心算法的过高时间复杂度 - 计算采用不同分裂点时,叶子打分函数的增益;并选择增益最高的分裂点,作为新迭代树的最终分裂 节点,构造新的迭代树 - 通过调节迭代树数目、学习倍率、迭代树0 码力 | 28 页 | 6.86 MB | 1 年前3
 深度学习与PyTorch入门实战 - 10. Broadcasting0 码力 | 12 页 | 551.84 KB | 1 年前3 深度学习与PyTorch入门实战 - 10. Broadcasting0 码力 | 12 页 | 551.84 KB | 1 年前3
 深度学习与PyTorch入门实战 - 33. regularizationHow ▪ L1-regularization ▪ L2-regularization lambda L2-regularization L1-regularization 下一课时 动量与学习率衰 减 Thank You.0 码力 | 10 页 | 952.77 KB | 1 年前3 深度学习与PyTorch入门实战 - 33. regularizationHow ▪ L1-regularization ▪ L2-regularization lambda L2-regularization L1-regularization 下一课时 动量与学习率衰 减 Thank You.0 码力 | 10 页 | 952.77 KB | 1 年前3
共 131 条
- 1
- 2
- 3
- 4
- 5
- 6
- 14













