积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(24)机器学习(24)

语言

全部中文(简体)(23)英语(1)

格式

全部PDF文档 PDF(24)
 
本次搜索耗时 0.057 秒,为您找到相关结果约 24 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《TensorFlow 2项目进阶实战》3-方案设计篇:如何设计可落地的AI解决方案

    方案设计篇:如何设计可落地的AI解决方案 扫码试看/订阅 《 TensorFlow 2项目进阶实战》视频课程 • 行业背景:AI新零售是什么? • 用户需求:线下门店业绩如何提升? • 长期⽬目标:货架数字化与业务智能化 • 短期目标:自动化陈列审核和促销管理 • 方案设计:基于深度学习的检测/分类的AI流水线 • 方案交付:支持在线识别和API调用的 AI SaaS 目录 行业背景:AI新零售是什么 用户需求:线下门店业绩如何提升? 全球实体零售发展遭遇天花板 品牌间存量竞争 ——《C时代 新零售——阿里研究院新零售研究报告》 线上销售的广告位:直通车/钻展 线下门店的广告位:黄金位置 用好你的广告位:线上设计 用好你的广告位:线下陈列 缺货 凌乱 销量下降 用好你的广告位:线下陈列 有气势! 整齐! 销量上涨! 品牌线下PK 如何脱颖而出? 品牌商线下渠道销售的普遍需求 长期⽬目标:货架数字化与业务智能化 促销执行统计 客户需求:棚格图推荐设计与销量预测 如何落地项目第一期? 短期目标:自动化陈列审核和促销管理 业务落地基础:货架数字化 SKU 种类 数量 位置 品类 占比 货架 设计 场景 层数 编号 业务落地:自动化陈列审核和促销管理 陈列 必分销 新品 纯度 排面 SKU 种类 数量 位置 品类 占比 货架 设计 场景 层数 编号 销售执行三板斧:分销达标
    0 码力 | 49 页 | 12.50 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》1-基础理论篇:TensorFlow 2设计思想

    基础理论篇:TensorFlow 2 设计思想 • TensorFlow 2 设计原则 • TensorFlow 2 核心模块 • TensorFlow 2 vs TensorFlow 1.x • TensorFlow 2 落地应用 目录 TensorFlow 2 设计原则 TensorFlow - Infra of AI TensorFlow 2 设计原则 TensorFlow 2
    0 码力 | 40 页 | 9.01 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    研究⽅向:机器学习系统,云计算,⼤数据系统 � 负责腾讯平台与内容事业群(PCG)技术中台核 ⼼引擎:⽆量系统。⽀持⼤规模稀疏模型训练, 上线与推理 提纲 �推荐场景深度学习系统的基本问题与特点 �推荐类模型的深度学习系统设计 � 系统维度 � 算法维度 �总结 基于深度学习模型的推荐流程,场景与⽬标 Serving系统 HDFS 数据 通道 训练系统 召回 业务服务 排序 混排 模型 管理 上线 百度 阿⾥ ⽆量 问题: CV/NLP低频上线,常⽤的模型 压缩算法不适应推荐场景 思考: 线上服务 成本 训练任务 成本 内存是主要瓶颈 > Embedding table可以设计得更⼩么?Double Hashing Embedding Table与第⼀层fc可以看作低秩矩阵分解 亿 亿 512 512 9 9 原始矩阵 矩阵分解 压缩⼿段除了量化和稀疏化,还有什么?因式分解
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    年华人学者之一,本科毕业于上海交通 大学ACM班,博士毕业于华盛顿大学计 算机系。 主要贡献:设计了XGBoost算法。 机器学习界的青年才俊 何恺明,本科就读于清华大学,博士毕业于 香港中文大学多媒体实验室。2016年,加入 Facebook AI Research(FAIR)担任研究科 学家。 主要贡献:设计了ResNets 8 国内外知名人工智能企业榜单 编码 企业名称 人工智能技术 应用领域 广播 62 Python模块-Pandas ⚫Pandas Pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而 创建的。 Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型 数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的 函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分 析环境的重要因素之一。 63 68 Python模块-SciPy ⚫SciPy SciPy是构建在NumPy的基础之上的,它 提供了许多的操作NumPy的数组的函数。 SciPy是一款方便、易于使用、专为科学和 工程设计的Python工具包,它包括了统计 、优化、整合以及线性代数模块、傅里叶 变换、信号和图像图例,常微分方差的求 解等 scipy.cluster 向量量化 scipy.constants 数学常量
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    年华人学者之一,本科毕业于上海交通 大学ACM班,博士毕业于华盛顿大学计 算机系。 主要贡献:设计了XGBoost算法。 人工智能界的青年才俊 何恺明,本科就读于清华大学,博士毕业于 香港中文大学多媒体实验室。2016年,加入 Facebook AI Research(FAIR)担任研究科 学家。 主要贡献:设计了ResNets 8 国内外知名人工智能企业榜单 编码 企业名称 人工智能技术 应用领域 广播 63 Python模块-Pandas ⚫Pandas Pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而 创建的。 Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型 数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的 函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分 析环境的重要因素之一。 64 69 Python模块-SciPy ⚫SciPy SciPy是构建在NumPy的基础之上的,它 提供了许多的操作NumPy的数组的函数。 SciPy是一款方便、易于使用、专为科学和 工程设计的Python工具包,它包括了统计 、优化、整合以及线性代数模块、傅里叶 变换、信号和图像图例,常微分方差的求 解等 scipy.cluster 向量量化 scipy.constants 数学常量
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    相同数据规模,时间越新,效果越好,且时间差距越大,差异越明显 • 月级规模数据,时间相差一周,效果相差约3+%(随数据规模增大,差距缩小) • 数据规模越大,效果越好 • 月级数据规模相比周级数据模型,效果相差5+% • 在线和离线模型效果对比 • 在线FM相比于离线FM,相关指标提升5+% • 完全在线初始化模型参数 • 增量在线FM相比于离线FM,相关指标提升8+% • 增量在线
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    用程序所有可能遇到的边界情况,并为这些边界情况设计合 适的规则。当买家单击将商品添加到购物车时,应用程序会向购物车数据库表中添加一个条目,将该用户ID与 商品ID关联起来。虽然一次编写出完美应用程序的可能性微乎其微,但在大多数情况下,开发人员可以从上 述的业务逻辑出发,编写出符合业务逻辑的应用程序,并不断测试直到满足用户的需求。根据业务逻辑设计 自动化系统,驱动正常运行的产品和系统,是一个人类认知上的非凡壮举。 识别“Alexa”这个词,大脑自己也能够识别它。有了这一能 力,我们就可以收集一个包含大量音频样本的数据集(dataset),并对包含和不包含唤醒词的样本进行标记。 利用机器学习算法,我们不需要设计一个“明确地”识别唤醒词的系统。相反,我们只需要定义一个灵活的 程序算法,其输出由许多参数(parameter)决定,然后使用数据集来确定当下的“最佳参数集”,这些参数 通过某种性能度量方式来达到完成任务的最佳性能。 据集,它很可能可以“学习”识别唤醒词。这种“通过用数据集来确定程序行为”的方法可以被看作用数据 编程(programming with data)。比如,我们可以通过向机器学习系统,提供许多猫和狗的图片来设计一个 “猫图检测器”。检测器最终可以学会:如果输入是猫的图片就输出一个非常大的正数,如果输入是狗的图片 就会输出一个非常小的负数。如果检测器不确定输入的图片中是猫还是狗,它会输出接近于零的数⋯⋯这个
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    更多的读者朋友了 解、喜欢并进入到人工智能行业中来,因此作者试图从分析人工智能中的简单问题入手,一 步步地提出设想、分析方案以及实现方案,重温当年科研工作者的发现之路,让读者身临其 境式的感受算法设计思想,从而掌握分析问题、解决问题的能力。这种方式也是对读者的基 础要求较少的,读者在学习本书的过程中会自然而然地了解算法的相关背景知识,体会到知 识是为了解决问题而生的,避免陷入为了学习而学习的窘境。 限于时间和篇幅关系,难免出现理解偏差甚 至错缪之处,若能大方指出,作者将及时修正,不胜感激。 龙良曲 2021 年 10 月 19 日 预览版202112 声 明 得益于简洁优雅的设计理念,基于动态图的 PyTorch 框架在学术圈广受好评,绝大多数 最新算法是基于 PyTorch 实现的,众多的第三方 AI 框架应用,例如 mmdetection、mmaction2、 tra : https://github.com/dragen1860/Deep-Learning-with-PyTorch-book ❑ 姊妹书《TensorFlow 深度学习—深入理解人工智能算法设计》: https://item.jd.com/12954866.html ❑ 联系邮箱(一般问题建议 Github issues 交流):liangqu.long AT gmail.com ❑
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    大数据 TensorFlow on Yarn 李远策 2017年4月17日 内容大纲 Ø TensorFlow使用现状及痛点� Ø TensorFlow on Yarn设计� Ø TensorFlow on Yarn技术细节揭秘� Ø 深度学习平台演进及SparkFlow介绍� 背景 坐标:360-系统部-⼤数据团队� 专业:Yarn、Spark、MR、HDFS 资源管理)� • 作业的统⼀管理、状态跟踪� • 资源组(Schedule Pool)的划分� • 作业进程的资源隔离� Yarn能解决什么问题:� TensorFlow on Yarn设计 • 同时支持单机和分布式TensorFlow程序� • 支持GPU资源管理和调度� • 不再需要⼿动配置CluserSpec信息,仅需要设置work 和ps的数量� • 训练数据和训练模型基于HDFS统⼀存储� TensorFlow on Yarn设计 • 支持GPU亲和性调度(提⾼通信效率)� • Web的⽅式查看作业的运⾏状况和作业日志� • 在线查看Tensorboard� • HistoryServer支持查看结束作业的日志和状态信息� • 控制已有的TensorFlow作业的迁移成本(最多改三⾏ 代码)� 扩展目标:� TensorFlow on Yarn设计 tensorflow-submit
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
  • pdf文档 超大规模深度学习在美团的应用-余建平

    Checkpoint解决不重不丢问题  外存解决大数据量性能问题  在引擎中流转log key,特征数据在外存 • 分业务场景支持  轻量级predictor:仅支持模型的计算,特征由业务传入,无状态设计  自定义predictor: 提供业务抽象,支持业务自定义逻辑,插件化实现 • 逻辑阶段抽象,业务根据自身需求选择性实现  数据获取: 根据业务的自身逻辑获取特征原始数据  特征抽取: 数百 千万 展位 数十 • 模型的设计 • 样本&特征的设计 • 模型的通路 模型召回解决方案 • 基于双塔的模型召回架构  基于用户和item的DNN结构  产出用户和item两侧向量 • 基于ANN的向量相似度检索  Item侧离线计算,形成ANN词表  用户侧向量实时计算,通过ANN找出相 似item向量 召回模型设计 • LBS的负例采样  与位置相关的negative 与位置相关的negative sampling 样本 & 特征设计 • 特征设计  用户侧:能设计完整的特征,个性化,实时特征  Item侧:预计算带来的副作用,不能使用实时特征 点击(+) 仅曝光 同地域 全体集合 分布偏差大 无效信息多 样本分布 • 在线、近线、离线全流程解决方案 召回模型通路 • 粗排模型 • 精排模型 排序模型解决方案 • 粗排阶段的特点 
    0 码力 | 41 页 | 5.96 MB | 1 年前
    3
共 24 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
TensorFlow快速入门实战方案设计方案设计如何落地AI解决解决方案基础理论基础理论思想推荐模型特点大规规模大规模深度学习系统机器课程温州大学01引言微博在线实践黄波动手v2PyTorch深度学习onYarn遇上数据超大超大规模美团应用建平
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩