Qcon北京2018-《深度学习在视频搜索领域的实践》-刘尚堃pdf��������������� ������� 目录 1、视频搜索的挑战 %、深度学m在视频内容理解h的应用——召回 3、深度学m在语k搜索h的应用——语k表征 4、深度学m在排序h的应用——g性化表征 视频搜索的挑战 1�����/���——���� 2����/�����——���� 3������——������ ��������������� 1������������0 码力 | 24 页 | 9.60 MB | 1 年前3
深度学习在百度搜索中的工程实践-百度-曹皓0 码力 | 40 页 | 29.46 MB | 1 年前3
深度学习在电子商务中的应用1 深度学习在电商搜索和聊天机器人中的应用 探索 SPEAKER / 程进兴 2017年4月 2 3 苏宁国际美国硅谷研究院 苏宁美国硅谷研究院创 建于2013年11月,其宗旨是建立 高科技人才和专利的蓄水池,推 动苏宁持续地创新和转型,为用 户提供简约完美的用户体验。 硅谷研究院由来自云计 算、大数据、人工智能及深度学 习等不同专业背景的工程师、数 据科学家及分析师组成。目前包 曾在甲骨文,雅虎,微软, 沃尔玛实验室等多家公司从事搜索,广告,大数 据分析,机器学习,人工智能应用等方面的研发 工作。在此期间,发表了10多篇相关领域的研究 论文,并有10多项相关领域的专利。 业余爱好: 骑行 个人简介 电子邮箱: jim.cheng@ususing.com 5 议程 • 深度学习与商品搜索 矢量化搜索技术简介 基于词语聚类的矢量化 基于用户会话的矢量化 =》 5岁 目前商品搜索中的一些问题 7 人工智能/深度学习在搜索中的应用:网页/电商搜索 • 基于深度学习的(Query, Document)分数是Google搜索引擎中第3重要的排序信 号 • 亚马逊(Amazon/A9)电子商务搜索引擎中, 深度学习还在实验阶段, 尚未进入生产线。 8 • 搜索数值矢量化 传统搜索基于文字匹配, 商品包含搜索词或者不包含搜索词 利用深度学习技术,0 码力 | 27 页 | 1.98 MB | 1 年前3
机器学习课程-温州大学-06机器学习-KNN算法机器学习-KNN算法 黄海广 副教授 2 01 距离度量 02 KNN算法 本章目录 03 KD树划分 04 KD树搜索 3 01 距离度量 02 KNN算法 03 KD树划分 04 KD树搜索 1.距离度量 4 距离度量 欧氏距离(Euclidean distance) ? ?, ? = ? ?? − ?? 2 欧几里得度量(Euclidean =1 ? ?? × ?? σ?=1 ? ( ??)2 × σ?=1 ? ( ??)2 10 01 距离度量 02 KNN算法 03 KD树划分 04 KD树搜索 2.KNN算法 11 2.KNN算法 ?近邻法(k-Nearest Neighbor,kNN)是一种比较成熟也是最简单的机器学习算 法,可以用于基本的分类与回归方法。 算法的主要思路: 统计这k个邻居的类别频次 5.k个邻居里频次最高的类别,即为测试对象 的类别 K=3 K=5 14 01 距离度量 02 KNN算法 03 KD树划分 04 KD树搜索 3.K-D-Tree划分 15 KD树划分 KD树(K-Dimension Tree),,也可称之为K维树 ,可以用更高的效率来对空间进行划分,并且其 结构非常适合寻找最近邻居和碰撞检测。0 码力 | 26 页 | 1.60 MB | 1 年前3
动手学深度学习 v2.0. . . . . . . . . . . . . . . . . 375 9.8 束搜索 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 9.8.1 贪心搜索 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 9.8.2 穷举搜索 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 9.8.3 束搜索 . . . . . . . . . . . . . . . . . . . . . . . . . ng)的。就像在现实生活中,尽管模拟考试考得很好,真正的考 试不一定百发百中。 1.2.4 优化算法 当我们获得了一些数据源及其表示、一个模型和一个合适的损失函数,接下来就需要一种算法,它能够搜索出 最佳参数,以最小化损失函数。深度学习中,大多流行的优化算法通常基于一种基本方法–梯度下降(gradient descent)。简而言之,在每个步骤中,梯度下降法都会检查每个参数,看看如果仅对该参数进行少量变动,训0 码力 | 797 页 | 29.45 MB | 1 年前3
搜狗深度学习技术在广告推荐领域的应用搜狗深度学习技术在广告推荐领域的应用 舒鹏 目录 CONTENTS 01 搜索广告背景知识 02 深度学习在搜狗搜索广告的一些应用 03 基于多模型融合的CTR预估 04 若干思考 搜索广告背景知识 信息需求 用户查询 查询理解 广告召回 点击率预估 排序计价 结果展示 点击及后续行为 广告库 日志收集 展示日志 点击日志 深度学习在搜狗搜索广告的一些应用 无需分词:基于字符粒度表达的问答系统设计 2016. Sogou Inc 文本相关性计算 文本相关性计算 深度学习在搜狗搜索广告的一些应用 LSTM LSTM LSTM 中长款 牛仔 外套 ResNet-50层 CNN-LSTM Encoder CNN CNN 中长款牛仔外套 Cosine-Loss 广告物料推荐 深度学习在搜狗搜索广告的一些应用 方向 用途 相关技术 图像理解 图片物料推荐 CNN 文本相关性0 码力 | 22 页 | 1.60 MB | 1 年前3
阿里云上深度学习建模实践-程孟力标准化 标准化模型库 标准化解决方案 1.方案复杂 图像 搜索 推荐 语音 视频理解 NLP 广告 CNN RNN GNN MLP Tensorflow PyTorch Parameter Server MPI TreeModel SQL MapReduce Blink 场景丰富: 图像/视频/推荐/搜索 大数据+大模型: Model Zoo 跨场景+跨模态 mmoe, ple? 特征选择/生成: Age, sex, comment, click… 解决方案: 超参搜索 效果提升 模型理解 问题: 黑盒 1. 参数太多 / 参数敏感 2. 候选空间大 3. 场景数据相关 模型创新 2.模型效果优化 模型效果优化: 超参数搜索NNI ExpId f1 .dim f2.dim auc 1 2 80 80 0 .687 9 48 48 8 0 .4 30 0 .1 1 9 2 0 .3 20 0 .1 0 8 9 0 .3 1 0 0 .0 95 1 5 0 .2 20 0 .0 87 模型效果优化: EasyRec 超参搜索 模型效果优化: EasyRec AutoFeature 特征组合 • Count select count(1) group by col • GroupByThenMax/Min/Avg/Sum0 码力 | 40 页 | 8.51 MB | 1 年前3
机器学习课程-温州大学-Scikit-learnsklearn提供了部分带交叉验证功能的模型 类如LassoCV、LogisticRegressionCV等, 这些类包含cv参数 26 2.Scikit-learn主要用法 交叉验证及超参数调优 超参数调优⸺网格搜索 from sklearn.model_selection import GridSearchCV from sklearn import svm svc = svm.SVC() params = fit(X_train, y_train) grid_search.best_params_ 在参数网格上进行穷举搜索,方法简单但是搜索速度慢(超参数较多时),且不 容易找到参数空间中的局部最优 27 2.Scikit-learn主要用法 交叉验证及超参数调优 超参数调优⸺随机搜索 from sklearn.model_selection import RandomizedSearchCV param_dist, n_iter=10) random_search.fit(X_train, y_train) random_search.best_params_ 在参数子空间中进行随机搜索,选取空间中的100个点进行建模(可从 scipy.stats常见分布如正态分布norm、均匀分布uniform中随机采样 得到),时间耗费较少,更容易找到局部最优 28 3.Scikit-learn案例0 码力 | 31 页 | 1.18 MB | 1 年前3
机器学习课程-温州大学-06深度学习-优化算法0.0001 0.001 0.1 1 假设你在搜索超参数(学习率),假设你怀疑其值最小是0.0001或最大是1。如果 你画一条从0.0001到1的数轴,沿其随机均匀取值,那90%的数值将会落在0.1到1 之间,结果就是,?在0.1到1之间,应用了90%的资源,而?在0.0001到0.1之间, 只有10%的搜索资源。 反而,用对数标尺搜索超参数的方式会更合理,因此这里不使用线性轴,分别依 次取0.0001,0.001,0.01,0.1,1,在对数轴上均匀随机取点,这样,在0.0001 到0.001之间,就会有更多的搜索资源可用,还有在0.001到0.01之间等等。 20 超参数调整的方法 Hyperparameter 1 Hyperparameter 2 Hyperparameter 1 Hyperparameter 2 21 由粗到细调整超参数 Hyperparameter0 码力 | 31 页 | 2.03 MB | 1 年前3
超大规模深度学习在美团的应用-余建平自我介绍 2011年硕士毕业于南京大学计算机科学与技术系。毕业后曾在百度凤巢从事机器学习 工程相关的工作,加入美团后,负责超大规模机器学习系统,从无到有搭建起支持千亿 级别规模的深度学习系统,与推荐、搜索、广告业务深度合作,在算法上提供从召回到 排序的全系统优化方案,在工程上提供离线、近线、在线的全流程解决方案。 目录 • 美团超大规模模型场景简介 • 超大规模机器学习MLX MLX平台目标 • 美团超大规模模型场景简介 • 超大规模机器学习MLX MLX平台目标 MLX平台架构 • 模型场景应用 召回模型 排序模型 美团超大规模模型应用场景 美团推荐 美团搜索 美团广告 美团应用场景简介 • 场景特点 亿级的用户,千万级的O2O商品 海量的用户行为,完整的交易闭环 LBS相关的推荐 • 模型特点 百亿级别的训练数据 千亿级别的模型特征 增量训练、避免batch重训带来的资源消耗 关于Online Learning MLX的模型能力 • 支持千亿级特征、千亿级样本 • 支持计算图模式,模型结构灵活多样 支持推荐、搜索、广告场景常用的深度学习模型 FTRL、FM、FFM、WDL、DCN、DeepFM、MTL等 • Optimizer FTRL、AdaGrad、AdaDelta、ADAM、AmsGrad、etc0 码力 | 41 页 | 5.96 MB | 1 年前3
共 26 条
- 1
- 2
- 3













