机器学习课程-温州大学-08机器学习-集成学习1 2022年12月 机器学习-集成学习 黄海广 副教授 2 本章目录 01 集成学习方法概述 02 AdaBoost和GBDT算法 03 XGBoost 04 LightGBM 3 1.集成学习方法概述 01 集成学习方法概述 02 AdaBoost和GBDT算法 03 XGBoost 04 LightGBM 4 Bagging 结果进行综合产生最终的预测结果: 集成学习 模型n …… 模型1 模型2 预测n …… 预测1 预测2 训练 数据 最终 预测 结果 测试 数据 5 Boosting 训练过程为阶梯状,基模型 按次序一一进行训练(实现 上可以做到并行),基模型 的训练集按照某种策略每次 都进行一定的转化。对所有 基模型预测的结果进行线性 综合产生最终的预测结果。 集成学习 模型n 最终 最终 预测 结果 模型2 预测n …… 预测1 预测2 转化 模型1 模型3 转化 转化 训练 数据 测试 数据 6 集成学习 模型n …… 模型1 模型2 预测n …… 预测1 预测2 训练 数据 第二 层数 据 Stacking 最终 预测 结果 Stacking 将训练好的所有基模型对训练基进行预测,第j个基模型对第i个训练样本的预测值将作为新的训0 码力 | 50 页 | 2.03 MB | 1 年前3
动手学深度学习 v2.0择Jupyter记事本来混合代码、公式和文本,选择Sphinx作为渲染引擎来生成多个输出,并为论坛提供讨论。 虽然我们的体系尚不完善,但这些选择在相互冲突的问题之间提供了一个很好的妥协。我们相信,这可能是 第一本使用这种集成工作流程出版的书。 1 http://distill.pub 2 http://discuss.d2l.ai 2 目录 在实践中学习 许多教科书教授一系列的主题,每一个都非常详细。例如,Chris Dagar和唐源将 部分较早版本的MXNet实现分别改编为PyTorch和TensorFlow实现。感谢百度团队将较新的PyTorch实现改 编为PaddlePaddle实现。感谢张帅将更新的LaTeX样式集成进PDF文件的编译。 特别地,我们要感谢这份中文稿的每一位撰稿人,是他们的无私奉献让这本书变得更好。他们的GitHub ID或姓名是(没有特定顺序):alxnorden, avinashingit w的L2范数是: 0.3556520938873291 4.5.3 简洁实现 由于权重衰减在神经网络优化中很常用,深度学习框架为了便于我们使用权重衰减,将权重衰减集成到优化 算法中,以便与任何损失函数结合使用。此外,这种集成还有计算上的好处,允许在不增加任何额外的计算 开销的情况下向算法中添加权重衰减。由于更新的权重衰减部分仅依赖于每个参数的当前值,因此优化器必 须至少接触每个参数一次。0 码力 | 797 页 | 29.45 MB | 1 年前3
Keras: 基于 Python 的深度学习库。 • 这种易用性并不以降低灵活性为代价:因为 Keras 与底层深度学习语言(特别是 Ten- sorFlow)集成在一起,所以它可以让你实现任何你可以用基础语言编写的东西。特别是, tf.keras 作为 Keras API 可以与 TensorFlow 工作流无缝集成。 2.2 Keras 被工业界和学术界广泛采用 Deep learning 框架排名,由 Jeff Hale 基于 CustomObjectScope() 提供一个无法转义的 _GLOBAL_CUSTOM_OBJECTS 范围。 with 语句中的代码将能够通过名称访问自定义对象。对全局自定义对象的更改会在封闭的 with 语句中持续存在。在 with 语句结束时,全局自定义对象将恢复到 with 语句开始时的状 态。 例子 考虑自定义对象 MyObject (例如一个类): with CustomObjectScope0 码力 | 257 页 | 1.19 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112org/网站下载最新版本(Python 3.7)的解释器, 像普通的应用软件一样安装完成后,就可以调用 python.exe 程序执行 Python 语言编写的源 代码文件(.py 格式)。 这里选择安装集成了 Python 解释器和虚拟环境等一系列辅助功能的 Anaconda 软件, 用户通过安装 Anaconda 软件,可以同时获得 Python 解释器、包管理和虚拟环境等一系列 便捷功能,何乐而不为呢。首先从 environment variable”一项,这样可以通过命令行方式调用 Anaconda 程序。如图 1.23 所示,安装程序 询问是否连带安装 VS Code 软件,选择 Skip 即可。整个安装流程约持续 5 分钟,具体时间 预览版202112 第 1 章 人工智能绪论 18 需依据计算机性能而定。 图 1.22 Anaconda 安装界面-1 图 1.23Anaconda 机制和处理不定长序列信号的能力,并 不擅长序列信号的任务。循环神经网络(Recurrent Neural Network,简称 RNN)在 Yoshua Bengio、Jürgen Schmidhuber 等人的持续研究下,被证明非常擅长处理序列信号。1997 预览版202112 6.8 汽车油耗预测实战 21 年,Jürgen Schmidhuber 提出了 LSTM 网络,作为 RNN 的变种,它较好地克服了0 码力 | 439 页 | 29.91 MB | 1 年前3
房源质量打分中深度学习应用及算法优化-周玉驰RESERVED 14 模型演变历程 2019 KE.COM ALL COPYRIGHTS RESERVED 15 模型演变历程 v1.0 初版模型系统 v2.0 深度学习模型 v2.0+ 效果持续优化 XGBoost DNN+RNN 特征建设 v1.0 初版模型系统 2019 KE.COM ALL COPYRIGHTS RESERVED 16 v1.0 - 初版模型系统概览 • 选房没有主观性 可以盘点所有房源质量 2019 KE.COM ALL COPYRIGHTS RESERVED 20 模型演变历程 v1.0 初版模型系统 v2.0 深度学习模型 v2.0+ 效果持续优化 XGBoost DNN+RNN 特征建设 2019 KE.COM ALL COPYRIGHTS RESERVED 21 RNN RNN LSTM 2019 KE.COM ALL COPYRIGHTS RESERVED 26 模型演变历程 v1.0 初版模型系统 v2.0 深度学习模型 v2.0+ 效果持续优化 XGBoost DNN+RNN 特征建设 2019 KE.COM ALL COPYRIGHTS RESERVED 27 v2.0+:持续优化 0.5% 业主诚意 0.5% 区域竞争力 特征维度 现状分析 房源基本属性 可以完善补充 客户 可以挖掘0 码力 | 48 页 | 3.75 MB | 1 年前3
Chatbots 中对话式交互系统的分析与应用(SLU) • DSTC3中定义的部分动作类别 语言理解 (SLU) Steve Young (2016) 状态追踪 Dialogue State Tracking (DST) • 对话状态应该包含持续对话所需要的各种信息 • DST问题:依据最新的系统和用户动作,更新对话状态 • Q:如何表示对话状态 状态追踪 (DST) 旧状态 用户动作 系统动作 新状态 策略优化 Dialogue “2016年房价涨了,开发商很高兴” • 房价涨了谁高兴? • 哪年房价涨了? • 不同的问题使用不同的方法 爱因互动:DeepBot框架 • 不同的问题使用不同的方法 合作方式总结 快速部署 深度定制 持续迭代 价值优先 总结: 一个崭新的世界 趋势 • 智能设备越来越多 • 手机、电脑、Pad、TV、盒子、Watch、AirPods 、音箱、空气净化器、 净水器 • 人迁就机器 机器迁就人0 码力 | 39 页 | 2.24 MB | 1 年前3
从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱� Facebook推荐场景推理成本占AI推理成本的 >72% [ISCA2020 RecNMP] � 千亿级推荐模型应⽤ O1. 千亿级特征(TB级)的模型的在线/离 线训练,在线推理服务和持续上线 O2. 针对推荐特点的深度优化,达到业界先 进⽔平 推荐系统的核⼼特点 � Feature 1(基本特点) 1.1 User与推荐系统交互,7*24⼩时 流式学习 1.2 Item和User新增,离开/遗忘, Collaborative Recommendation 问题3. ⼏⼗个场 景,独⽴链路 总结 � 千亿级推荐模型应⽤ O1. 千亿级特征(TB级)的模型的在线/离线训练, 在线推理服务和持续上线 O2. 针对推荐特点的深度优化,达到业界先进⽔平 ⽬标 推荐场景特点 � Feature1(基本特点) Item和user变化导致特征随时间新增,遗忘。 Embedding空间是动态的。0 码力 | 22 页 | 6.76 MB | 1 年前3
机器学习课程-温州大学-05机器学习-机器学习实践s聚类、 感知机和SVM、神经网络。另外,线性回归类的几个模型一般情况下也 是需要做数据归一化/标准化处理的。 不需要做数据归一化/标准化 决策树、基于决策树的Boosting和Bagging等集成学习模型对于特征取 值大小并不敏感,如随机森林、XGBoost、LightGBM等树模型,以及 朴素贝叶斯,以上这些模型一般不需要做数据归一化/标准化处理。 3.正则化、偏差和方差 19 过拟合和欠拟合 些模型选择的算法来帮忙(例如PCA)。 3.正则化 正则化(regularization)的技术,保留所有的特征,但是减少参数的大小(magnitude) ,它可以改善或者减少过拟合问题。 4.集成学习方法 集成学习是把多个模型集成在一起,来降低单一模型的过拟合风险。 21 通过这张图可以看出, 各种不同算法在输入的 数据量达到一定级数后 ,都有相近的高准确度 。于是诞生了机器学习 界的名言: 成功的机器学习应0 码力 | 33 页 | 2.14 MB | 1 年前3
机器学习课程-温州大学-02机器学习-回归-means聚类、 感知机和SVM。另外,线性回归类的几个模型一般情况下也是需要做数 据归一化/标准化处理的。 不需要做数据归一化/标准化 决策树、基于决策树的Boosting和Bagging等集成学习模型对于特征取 值大小并不敏感,如随机森林、XGBoost、LightGBM等树模型,以及 朴素贝叶斯,以上这些模型一般不需要做数据归一化/标准化处理。 22 3. 正则化 01 线性回归 些模型选择的算法来帮忙(例如PCA)。 3.正则化 正则化(regularization)的技术,保留所有的特征,但是减少参数的大小(magnitude) ,它可以改善或者减少过拟合问题。 4.集成学习方法 集成学习是把多个模型集成在一起,来降低单一模型的过拟合风险。 25 通过这张图可以看出, 各种不同算法在输入的 数据量达到一定级数后 ,都有相近的高准确度 。于是诞生了机器学习 界的名言: 成功的机器学习应0 码力 | 33 页 | 1.50 MB | 1 年前3
机器学习课程-温州大学-05深度学习-深度学习实践些模型选择的算法来帮忙(例如PCA)。 3.正则化 正则化(regularization)的技术,保留所有的特征,但是减少参数的大小(magnitude) ,它可以改善或者减少过拟合问题。 4.集成学习方法 集成学习是把多个模型集成在一起,来降低单一模型的过拟合风险。 9 通过这张图可以看出, 各种不同算法在输入的 数据量达到一定级数后 ,都有相近的高准确度 。于是诞生了机器学习 界的名言: 成功的机器学习应0 码力 | 19 页 | 1.09 MB | 1 年前3
共 17 条
- 1
- 2













