 深度学习与PyTorch入门实战 - 18.1 激活函数梯度激活函数及其梯度 主讲人:龙良曲 Activation Functions Derivative Sigmoid / Logistic Derivative torch.sigmoid Tanh = 2??????? 2? − 1 Derivative torch.tanh Rectified Linear Unit Derivative F.relu 下一课时 Loss及其梯度0 码力 | 14 页 | 724.00 KB | 1 年前3 深度学习与PyTorch入门实战 - 18.1 激活函数梯度激活函数及其梯度 主讲人:龙良曲 Activation Functions Derivative Sigmoid / Logistic Derivative torch.sigmoid Tanh = 2??????? 2? − 1 Derivative torch.tanh Rectified Linear Unit Derivative F.relu 下一课时 Loss及其梯度0 码力 | 14 页 | 724.00 KB | 1 年前3
 常见函数梯度常见函数梯度 主讲人:龙良曲 Common Functions ?? + ? ??? + ?? ??? + ?? [? − (?? + ?)]? ?log(?? + ?) 下一课时 什么是激活函数 Thank You.0 码力 | 9 页 | 282.15 KB | 1 年前3 常见函数梯度常见函数梯度 主讲人:龙良曲 Common Functions ?? + ? ??? + ?? ??? + ?? [? − (?? + ?)]? ?log(?? + ?) 下一课时 什么是激活函数 Thank You.0 码力 | 9 页 | 282.15 KB | 1 年前3
 激活函数与GPU加速激活函数与GPU加速 主讲人:龙良曲 Leaky ReLU simply SELU softplus GPU accelerated 下一课时 测试 Thank You.0 码力 | 11 页 | 452.22 KB | 1 年前3 激活函数与GPU加速激活函数与GPU加速 主讲人:龙良曲 Leaky ReLU simply SELU softplus GPU accelerated 下一课时 测试 Thank You.0 码力 | 11 页 | 452.22 KB | 1 年前3
 【PyTorch深度学习-龙龙老师】-测试版2021121 感知机 6.2 全连接层 6.3 神经网络 6.4 激活函数 6.5 输出层设计 6.6 误差计算 6.7 神经网络类型 6.8 油耗预测实战 6.9 参考文献 第 7 章 反向传播算法 7.1 导数与梯度 7.2 导数常见性质 7.3 激活函数导数 7.4 损失函数梯度 7.5 全连接层梯度 预览版202112 7 7.6 链式法则 7.7 反向传播算法 7.8 Himmelblau 函数优化实战 7.9 反向传播算法实战 7.10 参考文献 第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 8.8 参考文献 第 WGAN 原理 13.8 WGAN-GP 实战 13.9 参考文献 第 14 章 强化学习 14.1 先睹为快 14.2 强化学习问题 14.3 策略梯度方法 14.4 值函数方法 14.5 Actor-Critic 方法 14.6 小结 14.7 参考文献 第 15 章 自定义数据集 15.1 精灵宝可梦数据集 15.2 自定义数据集加载流程0 码力 | 439 页 | 29.91 MB | 1 年前3 【PyTorch深度学习-龙龙老师】-测试版2021121 感知机 6.2 全连接层 6.3 神经网络 6.4 激活函数 6.5 输出层设计 6.6 误差计算 6.7 神经网络类型 6.8 油耗预测实战 6.9 参考文献 第 7 章 反向传播算法 7.1 导数与梯度 7.2 导数常见性质 7.3 激活函数导数 7.4 损失函数梯度 7.5 全连接层梯度 预览版202112 7 7.6 链式法则 7.7 反向传播算法 7.8 Himmelblau 函数优化实战 7.9 反向传播算法实战 7.10 参考文献 第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 8.8 参考文献 第 WGAN 原理 13.8 WGAN-GP 实战 13.9 参考文献 第 14 章 强化学习 14.1 先睹为快 14.2 强化学习问题 14.3 策略梯度方法 14.4 值函数方法 14.5 Actor-Critic 方法 14.6 小结 14.7 参考文献 第 15 章 自定义数据集 15.1 精灵宝可梦数据集 15.2 自定义数据集加载流程0 码力 | 439 页 | 29.91 MB | 1 年前3
 动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . 81 2.7.1 查找模块中的所有函数和类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.7.2 查找特定函数和类的用法 . . . . . . . . . . . . . . . . . . . . . . . . . . . 定义模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.5 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.6 定义优化算法 . . . 4 初始化模型参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.3.5 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 ii 3.3.6 定义优化算法0 码力 | 797 页 | 29.45 MB | 1 年前3 动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . 81 2.7.1 查找模块中的所有函数和类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.7.2 查找特定函数和类的用法 . . . . . . . . . . . . . . . . . . . . . . . . . . . 定义模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.5 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.6 定义优化算法 . . . 4 初始化模型参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.3.5 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 ii 3.3.6 定义优化算法0 码力 | 797 页 | 29.45 MB | 1 年前3
 Keras: 基于 Python 的深度学习库的相同的栈式 LSTM 模型 . . . . . . . . . . . . 15 3.2 函数式 API 指引 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 开始使用 Keras 函数式 API . . . . . . . . . . . . . . . . . . . . . . 47 4.2.3.11 get_layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 函数式 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.1 Model . . . . . . . . . . . . . . . . 133 7 损失函数 Losses 134 7.1 损失函数的使用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.2 可用损失函数 . . . . . . . . . . . . . . . . . . . .0 码力 | 257 页 | 1.19 MB | 1 年前3 Keras: 基于 Python 的深度学习库的相同的栈式 LSTM 模型 . . . . . . . . . . . . 15 3.2 函数式 API 指引 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 开始使用 Keras 函数式 API . . . . . . . . . . . . . . . . . . . . . . 47 4.2.3.11 get_layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 函数式 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.1 Model . . . . . . . . . . . . . . . . 133 7 损失函数 Losses 134 7.1 损失函数的使用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.2 可用损失函数 . . . . . . . . . . . . . . . . . . . .0 码力 | 257 页 | 1.19 MB | 1 年前3
 机器学习课程-温州大学-02-数学基础回顾-1.CS229-LinearAlgebra矩阵的值域和零空间 3.10 行列式 3.11 二次型和半正定矩阵 3.12 特征值和特征向量 3.13 对称矩阵的特征值和特征向量 4.矩阵微积分 4.1 梯度 4.2 黑塞矩阵 4.3 二次函数和线性函数的梯度和黑塞矩阵 4.4 最小二乘法 4.5 行列式的梯度 4.6 特征值优化 线性代数复习和参考 1. 基础概念和符号 线性代数提供了一种紧凑地表示和操作线性方程组的方法。 加法的可交换性和相关性,以便重新排列求和的顺序。 3.5 范数 向量的范数 是非正式度量的向量的“长度” 。 例如,我们有常用的欧几里德或 范数, 注意: 更正式地,范数是满足4个属性的函数( ): 1. 对于所有的 , (非负). 2. 当且仅当 时, (明确性). 3. 对于所有 , ,则 (正齐次性). 4. 对于所有 , (三角不等式) 其他范数的例子是 小均为 。 事实上,还有很多例子。 证明: 换句话说, 和 是不相交的子集,它们一起跨越 的整个空间。 这种类型的集合称为正交 补,我们用 表示。 3.10 行列式 一个方阵 的行列式是函数 : ,并且表示为 。 或者 (有点像迹运算 符,我们通常省略括号)。 从代数的角度来说,我们可以写出一个关于 行列式的显式公式。 因此, 我们首先提供行列式的几何解释,然后探讨它的一些特定的代数性质。0 码力 | 19 页 | 1.66 MB | 1 年前3 机器学习课程-温州大学-02-数学基础回顾-1.CS229-LinearAlgebra矩阵的值域和零空间 3.10 行列式 3.11 二次型和半正定矩阵 3.12 特征值和特征向量 3.13 对称矩阵的特征值和特征向量 4.矩阵微积分 4.1 梯度 4.2 黑塞矩阵 4.3 二次函数和线性函数的梯度和黑塞矩阵 4.4 最小二乘法 4.5 行列式的梯度 4.6 特征值优化 线性代数复习和参考 1. 基础概念和符号 线性代数提供了一种紧凑地表示和操作线性方程组的方法。 加法的可交换性和相关性,以便重新排列求和的顺序。 3.5 范数 向量的范数 是非正式度量的向量的“长度” 。 例如,我们有常用的欧几里德或 范数, 注意: 更正式地,范数是满足4个属性的函数( ): 1. 对于所有的 , (非负). 2. 当且仅当 时, (明确性). 3. 对于所有 , ,则 (正齐次性). 4. 对于所有 , (三角不等式) 其他范数的例子是 小均为 。 事实上,还有很多例子。 证明: 换句话说, 和 是不相交的子集,它们一起跨越 的整个空间。 这种类型的集合称为正交 补,我们用 表示。 3.10 行列式 一个方阵 的行列式是函数 : ,并且表示为 。 或者 (有点像迹运算 符,我们通常省略括号)。 从代数的角度来说,我们可以写出一个关于 行列式的显式公式。 因此, 我们首先提供行列式的几何解释,然后探讨它的一些特定的代数性质。0 码力 | 19 页 | 1.66 MB | 1 年前3
 全连接神经网络实战. pytorch 版) print ( data_tensor . shape ) 输出都是: torch . Size ( [ 2 , 2 ] ) 对于二维 tensor 之间的相乘,@ 和 .matmul 函数表示矩阵相乘;∗ 和 .mul 表示矩阵元素之 间相乘: 6 Chapter 1. 准备章节 7 y = data_tensor @ data_tensor .T print (y) y torch . u t i l s . data import DataLoader 前面说过,Dataset 可以存储自定义数据,我们可以继承 Dataset 类,在子类中实现一些固定 功能的函数,这样就相当于封装了自己的数据为 Dataset 类型。为了方便起见,我们先描述如何 使用预加载数据,然后第二章就开始构建神经网络模型。等第四章我们再描述如何自定义数据集。 我们一次写一个完整的程序来把数据可视化一下: 表示导出的数据应该怎么转换,我们还可以使用参数 target_transf orm 表 示导出的数据标签应该怎么转换。 注意显示时我们调用了 squeeze() 函数,这是因为原来的数据维度是 (1,28,28) 的三维数据, 使用.squeeze() 函数可以把为 1 的维度去掉,即 shape 变为 (28,28)。程序得到显示结果: 随后我们再把数据导入到 DataLoader 里面: # batch_size0 码力 | 29 页 | 1.40 MB | 1 年前3 全连接神经网络实战. pytorch 版) print ( data_tensor . shape ) 输出都是: torch . Size ( [ 2 , 2 ] ) 对于二维 tensor 之间的相乘,@ 和 .matmul 函数表示矩阵相乘;∗ 和 .mul 表示矩阵元素之 间相乘: 6 Chapter 1. 准备章节 7 y = data_tensor @ data_tensor .T print (y) y torch . u t i l s . data import DataLoader 前面说过,Dataset 可以存储自定义数据,我们可以继承 Dataset 类,在子类中实现一些固定 功能的函数,这样就相当于封装了自己的数据为 Dataset 类型。为了方便起见,我们先描述如何 使用预加载数据,然后第二章就开始构建神经网络模型。等第四章我们再描述如何自定义数据集。 我们一次写一个完整的程序来把数据可视化一下: 表示导出的数据应该怎么转换,我们还可以使用参数 target_transf orm 表 示导出的数据标签应该怎么转换。 注意显示时我们调用了 squeeze() 函数,这是因为原来的数据维度是 (1,28,28) 的三维数据, 使用.squeeze() 函数可以把为 1 的维度去掉,即 shape 变为 (28,28)。程序得到显示结果: 随后我们再把数据导入到 DataLoader 里面: # batch_size0 码力 | 29 页 | 1.40 MB | 1 年前3
 PyTorch OpenVINO 开发实战系列教程第一篇本书内容以 Python 完成全部代码构建与程序演示。本章的主要目标是帮助初 次接触 Python 与 Pytorch 的读者搭建好开发环境,认识与理解 Pytorch 框架 中常见的基础操作函数、学会使用它们完成一些基础的数据处理与流程处理, 为后续内容学习打下良好基础。 好了,下面就让我们来一起开启这段 Pytorch 框架的深度学习破冰之旅。 PyTorch + OpenVINO 主要基于 Python 语言,而 Python 语言作为流行的人工智能开发语言一直很受研究者与 开发者的欢迎。其模型训练支持CPU与GPU、支持分布式训练、 云部署、针对深度学习特定领域有不同的丰富的扩展库。 1.1.1 Pytorch 历史 Pytorch 在 2016 年由 facebook 发布的开源机器学习(深度 学习)框架,Pytorch 最初的来源历史可以追溯到另外两个 机器学习框架,第一个是 易构建各种复杂的深度学习模型网络,因此很快得到大量人工 智能开发者的认可与追捧,也成为工业界最受欢迎的深度学习 框架之一。 Pytorch 发展至今,其版本跟功能几经迭代,针对不同的场景 任务分裂出不同的分支扩展库,比如针对自然语言处理(NLP) 的 torchtext、针对计算机视觉的 torchvision、针对语音处理 的 torchaudio,这些库支持快速模型训练与演示应用,可以 帮助开发者0 码力 | 13 页 | 5.99 MB | 1 年前3 PyTorch OpenVINO 开发实战系列教程第一篇本书内容以 Python 完成全部代码构建与程序演示。本章的主要目标是帮助初 次接触 Python 与 Pytorch 的读者搭建好开发环境,认识与理解 Pytorch 框架 中常见的基础操作函数、学会使用它们完成一些基础的数据处理与流程处理, 为后续内容学习打下良好基础。 好了,下面就让我们来一起开启这段 Pytorch 框架的深度学习破冰之旅。 PyTorch + OpenVINO 主要基于 Python 语言,而 Python 语言作为流行的人工智能开发语言一直很受研究者与 开发者的欢迎。其模型训练支持CPU与GPU、支持分布式训练、 云部署、针对深度学习特定领域有不同的丰富的扩展库。 1.1.1 Pytorch 历史 Pytorch 在 2016 年由 facebook 发布的开源机器学习(深度 学习)框架,Pytorch 最初的来源历史可以追溯到另外两个 机器学习框架,第一个是 易构建各种复杂的深度学习模型网络,因此很快得到大量人工 智能开发者的认可与追捧,也成为工业界最受欢迎的深度学习 框架之一。 Pytorch 发展至今,其版本跟功能几经迭代,针对不同的场景 任务分裂出不同的分支扩展库,比如针对自然语言处理(NLP) 的 torchtext、针对计算机视觉的 torchvision、针对语音处理 的 torchaudio,这些库支持快速模型训练与演示应用,可以 帮助开发者0 码力 | 13 页 | 5.99 MB | 1 年前3
 AI大模型千问 qwen 中文文档) 请 注 意, 原 Qwen 仓 库 中 的 旧 方 法 chat() 现 在 已 被 generate() 方 法 替 代。 这 里 使 用 了 apply_chat_template() 函数将消息转换为模型能够理解的格式。其中的 add_generation_prompt 参数用于在输入中添加生成提示,该提示指向 <|im_start|>assistant\n 。尤其需要注意的是,我们 。尤其需要注意的是,我们 遵循先前实践,对 chat 模型应用 ChatML 模板。而 max_new_tokens 参数则用于设置响应的最大长度。此 外,通过 tokenizer.batch_decode() 函数对响应进行解码。关于输入部分,上述的 messages 是一个 示例,展示了如何格式化对话历史记录和系统提示。默认情况下,如果您没有指定系统提示,我们将直接使 用 You are a helpful assistant 下一步 TGW 中包含了许多更多用途,您甚至可以在其中享受角色扮演的乐趣,并使用不同类型的量化模型。您可 以训练诸如 LoRA 这样的算法,并将 Stable Diffusion 和 Whisper 等扩展功能纳入其中。赶快去探索更多高级 用法,并将它们应用于 Qwen 模型中吧! 1.7 AWQ 对于量化模型,我们推荐使用 AWQ 结合 AutoAWQ 。AWQ 即激活感知权重量化,是一种针对 LLM0 码力 | 56 页 | 835.78 KB | 1 年前3 AI大模型千问 qwen 中文文档) 请 注 意, 原 Qwen 仓 库 中 的 旧 方 法 chat() 现 在 已 被 generate() 方 法 替 代。 这 里 使 用 了 apply_chat_template() 函数将消息转换为模型能够理解的格式。其中的 add_generation_prompt 参数用于在输入中添加生成提示,该提示指向 <|im_start|>assistant\n 。尤其需要注意的是,我们 。尤其需要注意的是,我们 遵循先前实践,对 chat 模型应用 ChatML 模板。而 max_new_tokens 参数则用于设置响应的最大长度。此 外,通过 tokenizer.batch_decode() 函数对响应进行解码。关于输入部分,上述的 messages 是一个 示例,展示了如何格式化对话历史记录和系统提示。默认情况下,如果您没有指定系统提示,我们将直接使 用 You are a helpful assistant 下一步 TGW 中包含了许多更多用途,您甚至可以在其中享受角色扮演的乐趣,并使用不同类型的量化模型。您可 以训练诸如 LoRA 这样的算法,并将 Stable Diffusion 和 Whisper 等扩展功能纳入其中。赶快去探索更多高级 用法,并将它们应用于 Qwen 模型中吧! 1.7 AWQ 对于量化模型,我们推荐使用 AWQ 结合 AutoAWQ 。AWQ 即激活感知权重量化,是一种针对 LLM0 码力 | 56 页 | 835.78 KB | 1 年前3
共 64 条
- 1
- 2
- 3
- 4
- 5
- 6
- 7













