积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(17)机器学习(17)

语言

全部中文(简体)(16)英语(1)

格式

全部PDF文档 PDF(17)
 
本次搜索耗时 0.044 秒,为您找到相关结果约 17 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 房源质量打分中深度学习应用及算法优化-周玉驰

    COM ALL COPYRIGHTS RESERVED 3 自我介绍 周玉驰  硕士毕业于中科院  先后就职于华为,百度和医渡云  目前就职于贝壳找房  主要负责两个方向  房源策略算法  房客人关系图谱 扫一扫二维码图案,加我微信 2019 KE.COM ALL COPYRIGHTS RESERVED 4 目录  为什么要做AI选房  如何做AI选房  COPYRIGHTS RESERVED 6 贝壳找房发展&挑战 20万 经纪人 98 门店平均房源 2.1万 门店 10-25 经纪人熟悉房源 70% 跨店成交占比 1.87亿 房屋 3000万 月活跃用户 • 需要强大的房源质量盘点工具 • 找到好房难度大,成本高 挑战 200万 贝壳全部房源 2019 KE.COM ALL COPYRIGHTS RESERVED 7 目标&价值 • 无法盘点所有房源质量 存在问题 人工选房流程 2019 KE.COM ALL COPYRIGHTS RESERVED 9 AI选房本质上是TopN排序问题 2019 KE.COM ALL COPYRIGHTS RESERVED 10 AI选房 - 房源质量打分   好房定义 AI选房建模 Y = f (X)  Y:未来?天能否成交  X:最近?天房源产生的所有行为
    0 码力 | 48 页 | 3.75 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    在我们开始写这本书的时候,没有资源能够同时满足一些条件:(1)是最新的;(2)涵盖了现代机器学习的 所有领域,技术深度丰富;(3)在一本引人入胜的教科书中,人们可以在实践教程中找到干净的可运行代码, 并从中穿插高质量的阐述。我们发现了大量关于如何使用给定的深度学习框架(例如,如何对TensorFlow中 的矩阵进行基本的数值计算)或实现特定技术的代码示例(例如,LeNet、AlexNet、ResNet的代码片段),这 如,亚马逊上的产品评级和评论。 在其他一些情况下,客户会提供隐性反馈。例如,某用户跳过播放列表中的某些歌曲,这可能说明这些歌曲 对此用户不大合适。总的来说,推荐系统会为“给定用户和物品”的匹配性打分,这个“分数”可能是估计 的评级或购买的概率。由此,对于任何给定的用户,推荐系统都可以检索得分最高的对象集,然后将其推荐 给用户。以上只是简单的算法,而工业生产的推荐系统要先进得多,它会将详细的用户活动和项目特征考虑 引言 图1.3.4: 亚马逊推荐的深度学习书籍 尽管推荐系统具有巨大的应用价值,但单纯用它作为预测模型仍存在一些缺陷。首先,我们的数据只包含“审 查后的反馈”:用户更倾向于给他们感觉强烈的事物打分。例如,在五分制电影评分中,会有许多五星级和一 星级评分,但三星级却明显很少。此外,推荐系统有可能形成反馈循环:推荐系统首先会优先推送一个购买 量较大(可能被认为更好)的商品,然而目前用户的购买
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 经典算法与人工智能在外卖物流调度中的应用

    2 3 4 5 路线规划 • 动态规划最优配送路线,且合理 并单,以最低的配送成本最大化 满足用户配送体验。 • 考虑用户期望时间的TSP问题 • 构建模型综合评估用户体验与配 送成本打分 • 采用动态规划和模拟退火算法等 算法,求得最优路线 1 8 时间预估 用户下单 开始配送 骑士到店 骑士取餐 到达用户 完成交付 商户接单 商户出餐 到店时间 出餐时间 送餐时间 DNN对特征工程要求较低,自身可以学习有用的特征,PCA降维影响较小,但时间复杂度较高 • XGBoost模型 - 采用近似求解算法,找出可能的分裂点,避免选用贪心算法的过高时间复杂度 - 计算采用不同分裂点时,叶子打分函数的增益;并选择增益最高的分裂点,作为新迭代树的最终分裂 节点,构造新的迭代树 - 通过调节迭代树数目、学习倍率、迭代树最大深度、L2正则化参数等进一步避免过拟合 2 获取样本数据 过滤数据 距离的节省: 订单组与骑士打分: 根据商圈压力调整: 3 分配方案 12 Greedy + 多轮KM算法分配方案 • Greedy分配解决特殊业务需求相关 • KM算法找到其余全局最优的分配方案 订单 骑士 订单 骑士 4 KM求解骑士和订单全局最优的分配 • 调度系统先对骑士和订单组(根据骑士的位置、身上的单量 等)进行打分,得到订单组和骑士的打分矩阵,然后根据业 务需
    0 码力 | 28 页 | 6.86 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02-数学基础回顾-2.CS229-Prob

    概率论复习和参考 1. 概率的基本要素 1.1 条件概率和独立性 2. 随机变量 2.1 累积分布函数 2.2 概率质量函数 2.3 概率密度函数 2.4 期望 2.5 方差 2.6 一些常见的随机变量 3. 两个随机变量 3.1 联合分布和边缘分布 3.2 联合概率和边缘概率质量函数 3.3 联合概率和边缘概率密度函数 3.4 条件概率分布 3.5 贝叶斯定理 3.6 独立性 3 ,它将概率度量指定为: 通过使用这个函数,我们可以计算任意事件发生的概率。图1显示了一个样本CDF函数。 性质: 2.2 概率质量函数 当随机变量 取有限种可能值(即, 是离散随机变量)时,表示与随机变量相关联的概率度量的更简单 的方法是直接指定随机变量可以假设的每个值的概率。特别地,概率质量函数(PMF)是函数 ,这样: 在离散随机变量的情况下,我们使用符号 表示随机变量 可能假设的一组可能值。例如,如果 )的硬币第一次掷出正面所需要的次数。 泊松分布:用于模拟罕见事件频率的非负整数的概率分布(其中: )。 图2:一些随机变量的概率密度函数(PDF)和累积分布函数(CDF) 分布 概率密度函数(PDF)或者概率质量函数 (PMF) 均 值 方差 (伯努利分布) (二项式分 布) 其中: (几何分布) 其中: 连续随机变量 均匀分布:在 和 之间每个点概率密度相等的分布(其中: )。
    0 码力 | 12 页 | 1.17 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    计算的角度来看,SkipGram非常消耗资源:尤其是我们将在 数据集中为每个训练样本做一次(很可能数千万次)。我们 需要做一些事情来提高效率。 一种方法是将目标分成两个步骤: 1.生成高质量的单词嵌入(不要担心下一个单词预测)。 2.使用这些高质量的嵌入来训练语言模型(进行下一个单词 预测)。 19 3.Word2Vec 负采样 并不是每次迭代都训练全部10,000个,我们只训练其中 的5个,我们要训练对应真正目标词那一个分类器,再训练 Transformer 资料来源:《Attention Is All You Need》,Ashish Vaswani et.al 2017 ◼ Transformer摆脱了人工标注数据集的缺陷,模型在质量上更优、 更易于并行化,所需训练时间明显更少 ◼ Transformer通过成功地将其应用于具有大量和有限训练数据的分 析,可以很好地推广到其他任务 ✓ 2017年,在Ashish Vaswani mechanism)连接编码器和解码器,因而《Attention Is All You Need》 中提出了一种新的简单架构——Transformer,它完全基于注意力机制, 完全不用重复和卷积,因而这些模型在质量上更优,同时更易于并行化,并 且需要的训练时间明显更少。 ✓ Transformer出现以后,迅速取代了RNN系列变种,跻身主流模型架构基 础。(RNN缺陷正在于流水线式的顺序计算) 图:Transformer模型架构
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    好的量化效果应用 AWQ scale,亦或是结合校准 数据使用 imatrix 工具。在这篇文档中,我们将展示最简便的模型量化方法,以及如何在对 Qwen 模型进行量 化时应用 AWQ 比例以优化其质量。 1.9.1 量化你的模型并生成 GGUF 文件 在进行量化操作之前,请确保你已经按照指导开始使用 llama.cpp。以下指引将不会提供有关安装和构建的步 骤。现在,假设你要对 Qwen1.5-7B-Chat 比特量化。 现在,这个量化后的模型可以直接通过 llama.cpp 运行。 18 Chapter 1. 文档 Qwen 1.9.2 利用 AWQ scales 来量化你的模型 要提升量化模型的质量,一种可能的解决方案是应用 AWQ scales。具体操作步骤如下:首先,在使用 AutoAWQ 运行 model.quantize() 时,请务必记得添加 export_compatible=True --outfile models/7B/qwen1_5-7b-chat-fp16- �→awq.gguf 通过这种方式,您可以在 GGUF 格式的量化模型中应用 AWQ scales,这有助于提升模型的质量。 我们通常将 fp16 模型量化为 2、3、4、5、6 和 8 位模型。要执行不同低比特的量化,只需在命令中替换量化 方法即可。例如,如果你想将你的模型量化为 2 位模型,你可以按照下面所示,将
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 QCon北京2018-《深度学习在微博信息流排序的应用》-刘博

    小流量-实验组 小流量-对照组 数据对比分析 算法架构 互动行为 点击行为 阅读行为 能力标签 兴趣标签 亲密度 自然属性 账号属性 用户特征 关键词 类型属性 topic 内容标签 内容质量 内容特征 组合特征 标签匹配度 用户互动率 协同特征 实时互动率 app互动率 微博内容 关注数据 用户信息 视觉标签 打码日志 社交关系 用户特征 发博流 互动流 曝光流
    0 码力 | 21 页 | 2.14 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒

    Go语言在高性能系统中的实践经验 • 为什么用Go - 比起C++,更易于实践各种并发模式 - 比起Java,更加简洁,更易于与C/C++交互 - 比起脚本语言,类型和内存安全,保证重构效率与产品质量 - 完善的配套工具,如go test, gofmt, go lint, race-detector Go语言在高性能系统中的实践经验 • Go在开发高性能应用上也有一些不足, 对比C++:
    0 码力 | 23 页 | 9.26 MB | 1 年前
    3
  • pdf文档 Chatbots 中对话式交互系统的分析与应用

    • 为企业提供人工智能对话解决方案 • Conversation as a Service Bot应用场景 • 清晰的知识结构和边界 • 非标准化服务,信息不对称 • 能够通过数据积累提升服务质量 • 能够建立知识和技术壁垒 • 对话作为粘合剂 • 用户画像,推荐系统,营销转化 爱因互动:API in, API out 各路API,快速对接 爱因互动合作示例 • 在线订餐位 •
    0 码力 | 39 页 | 2.24 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-机器学习项目流程

    的数据清理一般是由计算机而不是人工完成。 9 2.数据清洗 不合法值 空 值 异常检测 重复处理 拼写错误 命名习惯 数理统计技术 数据挖掘技术 脏数据 数据清理策略、规则 满足数据质量要求的数据 数据清理原理 10 探索性数据分析(EDA) 探索性数据分析(EDA)是一个开放式流程,我们制作绘图并计算 统计数据,以便探索我们的数据。 •目的是找到异常,模式,趋势或关系。
    0 码力 | 26 页 | 1.53 MB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
房源质量打分深度学习应用算法优化周玉驰动手v2经典人工智能人工智能外卖物流调度机器课程温州大学02数学基础回顾CS229Prob12自然语言自然语言处理嵌入AI模型千问qwen中文文档QCon北京2018微博信息信息流排序刘博未来都市智慧城市基于视觉陈宇恒Chatbots对话交互系统分析项目流程
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩