谭国富:深度学习在图像审核的应用深度学习在图像审核的应用 腾讯优图实验室 谭国富 http://open.youtu.qq.com SACC2017 优图团队立足于社交网络大平台,借助社交业务积累 的海量人脸、图片、音乐等数据,专注在人脸、图像、 音乐、语音、机器学习等领域开展技术研究,并积极 推动研究成果在业务中落地产生价值。 关于优图实验室 人脸识别 图像识别 音频识别 SACC2017 目录 01 腾讯优图内容审核能力介绍 SACC2017 内容审核 - 痛点和诉求 默默承受 自建识别模型 加大审核人力 一旦出现严重违规平 台面临停业整顿风险 昂贵的专业机器、AI专家, 样本不足导致识别模型漏 过模型调优难度大 人力审核疲劳容易发 生漏过,人力招聘、 管理需要耗费不小成 本 识别种类 完备 节约成本 节省审核 人力 减少人工 漏审 技术诉求:自动识别图片或视频中出现的文 字 业务痛点:面对越来越爆发的安全风险,解决办法门 槛高, 成本高;迫切需要技术解决方案 SACC2017 图像内容审核技术 OCR技术 图像分割以及超分辨率技术 优图图像技术还包括:图像分类、图像增强、艺术滤镜、图片去水印、图像融合、图像修补等。 图像识别技术 01 腾讯优图图像技术能力 SACC2017 内容审核 - 图片鉴黄解决方案 区分图像中的色情、性感和正常内容 DeepEye可给出图片属于色情、性感和正常0 码力 | 32 页 | 5.17 MB | 1 年前3
机器学习课程-温州大学-09深度学习-目标检测滑动窗口目标检测算法也有很 明显的缺点,就是计算成本, 因为你在图片中剪切出太多小 方块,卷积网络要一个个地处 理。如果你选用的步幅很大, 显然会减少输入卷积网络的窗 口个数,但是粗糙间隔尺寸可 能会影响性能。反之,如果采 用小粒度或小步幅,传递给卷 积网络的小窗口会特别多,这 意味着超高的计算成本。 23 2.目标检测算法 滑动窗口的卷积实现 24 2.目标检测算法 滑动窗口的卷积实现 proposals作为输入数据,训练Fast R-CNN一个单独的检测网络,这时候两个网络还没有共享卷 积层; • 第三步,调优RPN,用第二步的Faster RCNN model初始化RPN再次进行训练,但固定共享的卷 积层,并且只微调RPN独有的层,现在两个网络共享卷积层了; • 第四步,调优Faster RCNN,由第三步的RPN model初始化Faster RCNN网络,输入数据为第三步生 成的0 码力 | 43 页 | 4.12 MB | 1 年前3
Keras: 基于 Python 的深度学习库. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 目录 VIII 11 回调函数 Callbacks 146 11.1 回调函数使用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 11.1.13 LambdaCallback [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 11.2 创建一个回调函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 11.2.1 例: 记录损失历史 . epochs=5, batch_size=32) 或者,你可以手动地将批次的数据提供给模型: model.train_on_batch(x_batch, y_batch) 只需一行代码就能评估模型性能: loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128) 或者对新的数据生成预测: classes = model0 码力 | 257 页 | 1.19 MB | 1 年前3
动手学深度学习 v2.0策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 12 计算性能 503 12.1 编译器和解释器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 帮助读者快速了解大多数现代深度学习应用背后的基本工具。 • 第三部分讨论可伸缩性、效率和应用程序。首先,在 11节 中,我们讨论了用于训练深度学习模型的几 种常用优化算法。下一章 12节 将探讨影响深度学习代码计算性能的几个关键因素。在 13节 中,我们展 示了深度学习在计算机视觉中的主要应用。在 14节 和 15节 中,我们展示了如何预训练语言表示模型并 将其应用于自然语言处理任务。 4 目录 代码 案的任务,这其中的计算也超出了人类意识理解范畴。机器学习(machine learning,ML)是一类强大的可 以从经验中学习的技术。通常采用观测数据或与环境交互的形式,机器学习算法会积累更多的经验,其性能 17 也会逐步提高。相反,对于刚刚所说的电子商务平台,如果它一直执行相同的业务逻辑,无论积累多少经验, 都不会自动提高,除非开发人员认识到问题并更新软件。本书将带读者开启机器学习之旅,并特别关注深度0 码力 | 797 页 | 29.45 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112和海量数据让大 规模神经网络的训练成为可能。 2006 年,Geoffrey Hinton 首次提出深度学习的概念。2012 年,8 层的深层神经网络 AlexNet 发布,并在图片识别竞赛中取得了巨大的性能提升,此后几十层、数百层、甚至 上千层的神经网络模型相继提出,展现出深层神经网络强大的学习能力。业界一般将利用 深层神经网络实现的算法称作深度学习,本质上神经网络和深度学习可认为是相同的。 现在 征方法的优劣性非常的关键,同时也比较困难。神经网络的出现,使得人为设计特征这一 部分工作可以让机器自动完成学习,不需要人类干预。但是浅层的神经网络的特征提取能 力较为有限,而深层的神经网络擅长提取高层、抽象的特征,因此具有更好的性能表现。 针对特定任务 的检测逻辑 输出逻辑 人为设计的 特征检测方法 输出逻辑 特征提取网络 (浅层) 输出子网络 底层特征提取 网络 中层特征提取 网络 高层特征提取 代表的传统机器学习算法兴起而逐渐进入低谷,称为人工智能的第二次寒冬。支持向量机 拥有严格的理论基础,训练需要的样本数量较少,同时也具有良好的泛化能力,相比之 下,神经网络理论基础欠缺,可解释性差,很难训练深层网络,性能也相对一般。图 1.8 绘制了 1943 年~2006 年之间的重大时间节点。 ① 图片来自 https://slideplayer.com/slide/12771753/ ② 图片来自0 码力 | 439 页 | 29.91 MB | 1 年前3
机器学习课程-温州大学-Scikit-learnconfusion_matrix | 混淆矩阵. metrics.classification_report | 含多种评价的分类报告. 25 2.Scikit-learn主要用法 交叉验证及超参数调优 from sklearn.model_selection import cross_val_score clf = DecisionTreeClassifier(max_depth=5) scores sklearn提供了部分带交叉验证功能的模型 类如LassoCV、LogisticRegressionCV等, 这些类包含cv参数 26 2.Scikit-learn主要用法 交叉验证及超参数调优 超参数调优⸺网格搜索 from sklearn.model_selection import GridSearchCV from sklearn import svm svc = svm.SVC() best_params_ 在参数网格上进行穷举搜索,方法简单但是搜索速度慢(超参数较多时),且不 容易找到参数空间中的局部最优 27 2.Scikit-learn主要用法 交叉验证及超参数调优 超参数调优⸺随机搜索 from sklearn.model_selection import RandomizedSearchCV from scipy.stats import randint svc0 码力 | 31 页 | 1.18 MB | 1 年前3
阿里云上深度学习建模实践-程孟力语音助手 • • • 优势: 效果 显著超越 传统模型(线性层模型 / 树模型 / SVM模型 / … ) 深度学习应用场景 沙漠 湖泊 旅行 深度学习应用主要的挑战: 2.模型效果优 化困难 3.工程优化复 杂 4.数据获取困 难 挑战 深度模型是非线性的: • 参数很多 • 参数敏感 • 不同场景的数据上差异大 1.方案复杂 从FM到DeepFM rt 增 ✗ 标注速度慢 ✗ 标注成本高 ✗ 样本分布不均匀 ✗ 隐私保护 • 多个环节 • 多种模型 ✗ 海量参数 ✗ 海量数据 从FM到DeepFM rt 增 加了10倍怎么优化? 2.模型效果优 化困难 1.方案复杂 Data Model Compute Platform 要求: 准确: 低噪声 全面: 同分布 模型选型: 容量大 计算量小 训练推理: 高qps Swin Retrieval Image Generation Video Caption EasyVision: 图像视频算法库 Bert TextInput Optim izer 性能优越: 分布式存储 分布式查询 功能完备: GSL/负采样 主流图算法 异构图 (user/item/attribute) 动态图 标准化: Standard Libraries0 码力 | 40 页 | 8.51 MB | 1 年前3
PyTorch OpenVINO 开发实战系列教程第一篇学习)框架,Pytorch 最初的来源历史可以追溯到另外两个 机器学习框架,第一个是 torch 框架,第二个是 Chainer,实 现了 Eager 模式与自动微分,Pytoch 集成了这两个框架的优 点, 把 Python 语言作为框架的首选编程语言,所以它的名字 是在 torch 的前面加上 Py 之后的 Pytorch。由于 Pytorch 吸 取了之前一些深度学习框架优点,开发难度大大降低、很容易 分为三种不同的版本分别是稳 定版本 (Stable Release)、Beta 版本、原型版本(Prototype)。 其中稳定版本长期支持维护没有明显的性能问题与缺陷,理论 上支持向后兼容的版本;Beta 版本是基于用户反馈的改动版 本,可能有 API/SDK 函数改动,性能有进一步需要提升的空间; 原型版本是新功能还不可以,需要开发不能通过 pip 方式直接 安装。 1.1.2 Pytorch 的模块与功能 通过它们就可 以实现大多数的模型结构搭建与生成。 2)torch.utils 包,里面主要包括训练模型的输入数据处理类、 pytorch 自带的模型库、模型训练时候可视化支持组件、检查 点与性能相关的组件功能。重要的类有数据集类(Dataset), 数据加载类 (DataLoader)、自定义编程的可视化支持组件 tensorboard 相关类。 3)torch 开头的一些包与功能,主要包括支持模型导出功能0 码力 | 13 页 | 5.99 MB | 1 年前3
《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别验证码识别模型 优化器对比: 验证码识别模型 “Hello TensorFlow” Try it 模型部署与效果演示 数据-模型-服务流水线 数据集 生成 数据 处理 模型 训练 参数 调优 模型 部署 识别 服务 使用 Flask 快速搭建 验证码识别服务 使用 Flask 启动 验证码识别服务 $ export FLASK_ENV=development && flask0 码力 | 51 页 | 2.73 MB | 1 年前3
机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入2017年,在Ashish Vaswani et.al 的论文《Attention Is All You Need》 中,考虑到主导序列转导模型基于编码器-解码器配置中的复杂递归或卷积 神经网络,性能最好的模型被证明还是通过注意力机制(attention mechanism)连接编码器和解码器,因而《Attention Is All You Need》 中提出了一种新的简单架构——Tra 机器学习系统通过使用大型数据集、高容 量模型和监督学习的组合,在训练任务方 面表现出色,然而这些系统较为脆弱,对 数据分布和任务规范的轻微变化非常敏感, 因而使得AI表现更像狭义专家,并非通才。 GPT-2要 解决和优 化的问题 ◼ GPT-2(2019.2)在GPT-1的基础上进行诸多改进,实现执行任务多样性,开始学习在不需要明确监督的情 况下执行数量惊人的任务 ✓ 在GPT-2阶段,OpenAI去掉了GP Learners》论文 • 预训练加微调范式中,可能在这种范式下实现的 泛化可能很差,因为该模型过于特定于训练分布, 并且在其之外无法很好地泛化。 • 微调模型在特定基准上的性能,即使名义上是人 类水平,也可能夸大基础任务的实际性能。 存在的问题03: 因为人类学习大多数语言任务不需要 大型受监督的数据集,当前NLP技术 在概念上具有一定的局限性。 存在的问题01: 从实用的角度来看,每一项新任务都需0 码力 | 44 页 | 2.36 MB | 1 年前3
共 44 条
- 1
- 2
- 3
- 4
- 5













