开发环境安装开发环境准备 主讲人:龙良曲 开发环境 ▪ Python 3.7 + Anaconda 5.3.1 ▪ CUDA 10.0 ▪ Pycharm Community ANACONDA CUDA 10.0 ▪ NVIDIA显卡 CUDA 安装确认 路径添加到PATH CUDA 测试 PyTorch安装 管理员身份运行cmd PyCharm ▪ 配置Interpreter0 码力 | 14 页 | 729.50 KB | 1 年前3
PyTorch OpenVINO 开发实战系列教程第一篇PyTorch + OpenVINO 开发实战系列教程 第一篇 系列文章 OpenVINO TM 工具套件 目录 目录 概述 ��������������������������������������������������������������������������������������������������������������������������������� Pytorch 开发经验的读者来说可以直接跳 过;对初次接触 Pytorch 的读者来说,通过本章学习认识 Pytorch 框架,搭建 好 Pytorch 的开发环境,通过一系列的基础代码练习与演示建立起对深度学习 与 Pytorch 框架的感性认知。 本书内容以 Python 完成全部代码构建与程序演示。本章的主要目标是帮助初 次接触 Python 与 Pytorch 的读者搭建好开发环境,认识与理解 框架的深度学习破冰之旅。 PyTorch + OpenVINO 开发实战系列教程 第一篇 2 1. Pytorch 介绍与基础知识 1.1 Pytorch 介绍 Pytorch 是开放源代码的机器学习框架,目的是加速从研究 原型到产品开发的过程。其 SDK 主要基于 Python 语言,而 Python 语言作为流行的人工智能开发语言一直很受研究者与 开发者的欢迎。其模型训练支持CPU与GPU、支持分布式训练、0 码力 | 13 页 | 5.99 MB | 1 年前3
动手学深度学习 v2.03 训练模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 7.5 批量规范化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 7.5.1 1 训练深层网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 7.5.2 批量规范化层 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 7.5.3 从零实现 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 7.5.4 使用批量规范化层的 LeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 7.5.5 简明实现 . . . . . . . . .0 码力 | 797 页 | 29.45 MB | 1 年前3
《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别TensorFlow 验证码识别 扫描二维码 试看/购买《TensorFlow 快速入门与实战》视频课程 • 准备模型开发环境 • 生成验证码数据集 • 输入与输出数据处理 • 模型结构设计 • 模型损失函数设计 • 模型训练过程分析 • 模型部署与效果演示 第六部分 目录 准备模型开发环境 第三方依赖包 数据集生成 • Pillow • captcha 模型可视化 • pydot Library) 为 Python 解释器添加了图像处理功能。但是,在 2009 年发布 1.1.7 版本后,社区便停止更新和维护。 Pillow 是由 Alex Clark 及社区贡献者 一起开发和维护的一款分叉自 PIL 的图像工具库。 至今,社区依然非常活跃,Pillow 仍在快速迭代。 Pillow提供广泛的文件格式支持,高效的内部表示和相当强大的图像处理功能。 核心图像库旨在快速访问以几种基本像素格式存储的数据, GraphViz:将图形渲染为PDF,PNG,SVG等格式文件,需独立安装。 https://github.com/lepture/captcha flask flask 是一个基于 Werkzeug 和 jinja2 开发的 Python Web 应用程序框架,遵从 BSD 开源协 议。它以一种简约的方式实现了框架核心,又保留了扩展性。 https://github.com/pallets/flask 生成验证码数据集0 码力 | 51 页 | 2.73 MB | 1 年前3
Keras: 基于 Python 的深度学习库. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 为什么选择 Keras? 5 2.1 Keras 优先考虑开发人员的经验 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Keras 被工业界和学术界广泛采用 . . . . . 35 3.3.19 Keras 配置文件保存在哪里? . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.20 如何在 Keras 开发过程中获取可复现的结果? . . . . . . . . . . . . . . . . 36 3.3.21 如何在 Keras 中安装 HDF5 或 h5py 来保存我的模型? . . . . 3 可用的惩罚 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 16.4 开发新的正则化器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 目录 X 17 约束 Constraints0 码力 | 257 页 | 1.19 MB | 1 年前3
《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测63757 -0.22368 -0.78305 训练数据: 假设函数: 使用 TensorFlow 实现房价预测模型 使用 TensorFlow 训练模型的工作流 数据读入 数据分析 数据 规范化 创建模型 (数据流图) 创建会话 (运行环境) 训练模型 数据分析库:Pandas Pandas 是一个 BSD 开源协议许可的,面向 Python 用户的高性能和易于上手的数 参数变化趋势。 在模型测试过程中,用户也往往需要查看准确率和召回率等评估指标。 因此,TensorFlow 项目组开发了机器学习可视化工具 TensorBoard , 它通过展示直观的图形,能够有效地辅助机器学习程序的开发者和使 用者理解算法模型及其工作流程,提升模型开发工作效率。 TensorBoard 可视化训练 TensorBoard 可视化统计数据 TensorBoard 可视化数据分布0 码力 | 46 页 | 5.71 MB | 1 年前3
机器学习课程-温州大学-05机器学习-机器学习实践03 正则化、偏差和方差 4 训练集(Training Set):帮助我们训练模型,简单的说就是通过 训练集的数据让我们确定拟合曲线的参数。 验证集(Validation Set):也叫做开发集( Dev Set ),用来做 模型选择(model selection),即做模型的最终优化及确定的, 用来辅助我们的模型的构建,即训练超参数,可选; 测试集(Test Set): 为了测试已经训练好的模型的精确度。 Normalization After Normalization x1 x2 r=1 x1 x2 Normalization 3.正则化、偏差和方差 17 归一化(最大 - 最小规范化) ?∗ = ? − ?min ?max − ?min 将数据映射到[0,1]区间 Z-Score标准化 ?∗ = ? − ? ? ?2 = 1 ? ?=1 ? (? ?0 码力 | 33 页 | 2.14 MB | 1 年前3
谭国富:深度学习在图像审核的应用直播行业的快速兴起,使得视频中不良信 息含量更加迅猛增长,色情暴力等不雅视 频频繁流出,导致各网络直播平台面临危 机。 Ø 内容监管日趋严格, 2017年上半年,各 大直播行业协会相应成立,行业平台自我 规范的同时,网信办、文化部等国家部门 对于直播行业监管也越发严格,几乎所有 知名的直播平台均被有关部门点名查处过, 特别2017 年月中旬,黄鳝事件引爆网络, 让色情直播再度被推上舆论浪尖。 • 在部署了DeepEye视频直播鉴黄解决方案后,系 统对直播房间的视频流按指定的时间间隔(用户 可配置)进行截图,通过鉴黄引擎给该图片进行 鉴别,并将可疑图片和对应的房间信息回调给开 发者,开发者可以根据返回的结果信息优先给审 核人员进行审核,进行封停等进一步处理。经过 审核没有问题的内容再呈现倒观看者的屏幕。 SACC2017 从静到动:结合视频识别能力 多物体检测 监控场景人体属性0 码力 | 32 页 | 5.17 MB | 1 年前3
机器学习课程-温州大学-时间序列总结dates_index = pd.date_range('2018-01-01', periods=5, freq='W-SUN') 24 创建固定频率的时间序列 如果日期中带有与时间相关的信息,且想产 生一组被规范化到当天午夜的时间戳,可以 将normalize参数的值设为True。 pd.date_range(start='2018/8/1 12:13:30', periods=5, normalize=True 称为是平稳的。 66 • 本章主要介绍了Pandas中用于处理时间序列的相关内容,包括创 建时间序列、时间戳索引和切片操作、固定频率的时间序列、时期 及计算、重采样、滑动窗口和时序模型,最后开发了一个股票预测 分析的案例。 • 通过对本章内容的学习,读者应该掌握处理时间序列数据的一些技 巧,并灵活加以运用。 本章小结 67 谢 谢!0 码力 | 67 页 | 1.30 MB | 1 年前3
机器学习课程-温州大学-线性代数回顾?2, ⋯ , ??使其两两正交,且??仅是?1, ?2, ⋯ , ??的线性 组合(? = 1,2, ⋯ , ?),再把??单位化,记?? = ?? ?? ,则?1, ?2, ⋯ , ??是规范正交向量组。 其中 ?1 = ?1, ?2 = ?2 − (?2,?1) (?1,?1) ?1 , ?3 = ?3 − (?3,?1) (?1,?1) ?1 − (?3,?2) (?2,?2) , ?2) (?2, ?2) ?2 − ⋯ − (??, ??−1) (??−1, ??−1) ??−1 3.向量 22 9.正交基及规范正交基 向量空间一组基中的向量如果两两正交,就称为正交基;若正交基中每个向量都是单位向量, 就称其为规范正交基。 3.向量 23 4.线性方程组 01 行列式 02 矩阵 03 向量 06 二次型 05 矩阵的特征值和特征向量 = ???(?, ? = 1,2, ⋯ , ?),所以二次型矩阵均为对称矩阵,且二次型与对称矩 阵一一对应,并把矩阵?的秩称为二次型的秩。 6.二次型 35 2.惯性定理,二次型的标准形和规范形 (1) 惯性定理 对于任一二次型,不论选取怎样的合同变换使它化为仅含平方项的标准型,其正负 惯性指数与所选变换无关,这就是所谓的惯性定理。 (2) 标准形 二次型? = ?1, ?2,0 码力 | 39 页 | 856.89 KB | 1 年前3
共 33 条
- 1
- 2
- 3
- 4













