机器学习课程-温州大学-特征工程先对数据集进行特征选择,其过程与后续 学习器无关,即设计一些统计量来过滤特 征,并不考虑后续学习器问题 包裹式(Wrapper): 就是一个分类器,它是将后续的学习器的 性能作为特征子集的评价标准 嵌入式(Embedding): 是学习器自主选择特征 4. 特征选择 特征选择的三种方法 28 许永洪,吴林颖.中国各地区人口特征和房价波动的动态关系[J].统计研究,2019,36(01) 原 原始特征集合 基模型训练 新特征子集合 特征个数是否达到预设值 输出子集合 否 是 35 许永洪,吴林颖.中国各地区人口特征和房价波动的动态关系[J].统计研究,2019,36(01) 原理:嵌入式特征选择是将特征选择与学习器训练过程融为一体,两 者在同一个优化过程中完成的。即学习器训练过程中自动进行了特征 选择。 常用的方法包括: ➢利用正则化,如L1, L2 范数,主要应用于如线性回归、逻辑回归以及 支持向量机(SVM)等算法;优点:降低过拟合风险;求得的 w 会有 较多的分量为零,即:它更容易获得稀疏解。 ➢使用决策树思想,包括决策树、随机森林、Gradient Boosting 等。 嵌入式 4. 特征选择 36 许永洪,吴林颖.中国各地区人口特征和房价波动的动态关系[J].统计研究,2019,36(01) 在 Lasso 中,λ 参数控制了稀疏性: ➢如果 λ 越小,则稀疏性越小,被选择的特征越多0 码力 | 38 页 | 1.28 MB | 1 年前3
机器学习课程-温州大学-Scikit-learnRFECV(estimator, scoring=“r2”) 封装式(Wrap- per),结合交叉验证的递归特征消除法,自动选择最优特征个数 fs.SelectFromModel(estimator) 嵌入式(Embedded),从 模型中自动选择特征,任何具有coef_或者 feature_importances_的 基模型都可以作为estimator参数传入 14 2.Scikit-learn主要用法0 码力 | 31 页 | 1.18 MB | 1 年前3
谭国富:深度学习在图像审核的应用w x b 公共计算库 X86 优化 Android 优化 iOS 优化 GPU 优化 内存池 硬件设备 网络模型 • 越来越多的应用场景,云服务,Android,iOS, 闸机嵌入式 • 越来越复杂的限制条件, 内存,功耗,延迟 • 越来越多的数据量,图像从百万到千万,数据从图像到视频 • 越来越复杂的网络结构,从Resnet,ResNeXt,DenseNet,DPN,SENET0 码力 | 32 页 | 5.17 MB | 1 年前3
PyTorch OpenVINO 开发实战系列教程第一篇能赋能各 行各业,Pytorch 框架必然会更加得到开发者的青睐,成为人 工智能 (AI) 开发者必备技能之一。同时 Pytorch 也会在部署跟 推理方面会更加完善与方便,加强支持移动端,嵌入式端等应 用场景,相信掌握 Pytorch 框架的开发技术人才也会得到丰厚 回报。 1.2 环境搭建 Pytorch 的开发环境搭建十分的简洁,它的依赖只有 Python 语 言 SDK, 只0 码力 | 13 页 | 5.99 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112预览版202112 3.8 手写数字图片识别体验 11 nn.Linear(28*28, 256) 使用 Sequential 容器可以非常方便地搭建多层的网络。对于 3 层网络,我们可以通过快速 完成 3 层网络的搭建。 # 利用 Sequential 容器封装 3 个网络层,前网络层的输出默认作为下一层的输入 model = nn.Sequential( # 创建第一层,输入为 PyTorch 张量的数据导出为 numpy 数组格式 Out[3]: array([1. , 2. , 3.3], dtype=float32) 创建向量、矩阵、张量等,可以通过 List 容器传给 torch.tensor()函数。例如,创建一 个元素的向量,代码如下: In [4]: a = torch.tensor([1.2]) # 创建一个元素的向量 a, a.shape Numpy Array 数组和 Python List 列表是 Python 程序中非常重要的数据载体容器,很多 数据都是通过 Python 语言将数据加载至 Array 或者 List 容器,再转换到 Tensor 类型,通过 PyTorch 运算处理后导出到 Array 或者 List 容器,方便其他模块调用。 通过 tf.tensor()函数可以创建新 Tensor,并将保存在 Python0 码力 | 439 页 | 29.91 MB | 1 年前3
《TensorFlow 2项目进阶实战》6-业务落地篇:实现货架洞察Web应⽤ORM 选型 • 搭建 AI SaaS 理论:10 分钟快速开发 AI SaaS • 搭建 AI SaaS 实战:10 分钟快速开发 AI SaaS • 交付 AI SaaS:10 分钟快速掌握容器部署 • 交付 AI SaaS:部署和测试 AI SaaS 目录 串联 AI 流程理论:商品检测与商品识别 检测模型 RetinaNet 前向转换和使用 加载检测推理模型 detector AI SaaS:10 分钟快速掌握容器部署 更新依赖 requirements.txt 为 AI SaaS 编写 Dockerfile 为 AI SaaS 构建 Docker 镜像(TF 容器外) $ docker build –t tf2-ai-saas -f ai_saas/Dockerfile . 为 AI SaaS 构建 Docker 镜像(TF 容器外) $ docker build0 码力 | 54 页 | 6.30 MB | 1 年前3
《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务中使用 TensorFlow 2 在 Jupyter Lab 中使用 TensorFlow 2 在 Jupyter Lab 中使用 TensorFlow 2 Docker 容器 与 虚拟机 虚拟机 Docker 容器 在 Docker 中使用 TensorFlow 2 在 Docker 中使用 TensorFlow 2 在 Docker 中使用 TensorFlow 2 “Hello0 码力 | 52 页 | 7.99 MB | 1 年前3
机器学习课程-温州大学-01机器学习-引言的环境的安装 54 Python 的主要数据类型 ⚫字符串 ⚫整数与浮点数 ⚫布尔值 ⚫日期时间 ⚫其它 55 Python 的数据结构 ⚫列表(list) 用来存储一连串元素的容器,列表用[ ]来表示,其中元素的类型可不相同。 ⚫元组(tuple) 元组类似列表,元组里面的元素也是进行索引计算。列表里面的元素的值可以修改,而元组 里面的元素的值不能修改,只能读取。元组的符号是( 图,错误图,散点图等。 https://matplotlib.org/gallery/index.html 70 Python模块-Matplotlib 图形的各元素名称如下: 绘图框 是图形的最高容器,所 有图形必须放置在绘图框中. 子图 是绘图框中所包含的图形 ,即便绘图框只包含一幅图,也 称之为子图. 元素 是组成子图的部件,从子 图最内部的数据线条到外围的坐 标轴标签等都属于元素0 码力 | 78 页 | 3.69 MB | 1 年前3
机器学习课程-温州大学-01深度学习-引言的环境的安装 55 Python 的主要数据类型 ⚫字符串 ⚫整数与浮点数 ⚫布尔值 ⚫日期时间 ⚫其它 56 Python 的数据结构 ⚫列表(list) 用来存储一连串元素的容器,列表用[ ]来表示,其中元素的类型可不相同。 ⚫元组(tuple) 元组类似列表,元组里面的元素也是进行索引计算。列表里面的元素的值可以修改,而元组 里面的元素的值不能修改,只能读取。元组的符号是( 图,错误图,散点图等。 https://matplotlib.org/gallery/index.html 71 Python模块-Matplotlib 图形的各元素名称如下: 绘图框 是图形的最高容器,所 有图形必须放置在绘图框中. 子图 是绘图框中所包含的图形 ,即便绘图框只包含一幅图,也 称之为子图. 元素 是组成子图的部件,从子 图最内部的数据线条到外围的坐 标轴标签等都属于元素0 码力 | 80 页 | 5.38 MB | 1 年前3
QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒Kubernetes在异构系统调度中的挑战 • Kubernetes版本发布快,新特性更新频繁,对异构调度的支持不断加强;但配套设施落后(e.g. Spark on K8s, GitlabCI) • 容器系统调用栈深,需要仔细验证操作系统,内核及异构设备驱动的兼容性 • Kubernetes对NUMA、异构计算、存储设备的调度能力待加强 1.6 nvidia/gpu custom scheduler0 码力 | 23 页 | 9.26 MB | 1 年前3
共 12 条
- 1
- 2













