积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)机器学习(11)

语言

全部中文(简体)(10)英语(1)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.066 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    语言环境为例,介绍如何安装 PyTorch 框架及其它开发软件。 一般来说,开发环境安装分为 4 大步骤:安装 Python 解释器 Anaconda,安装 CUDA 加速库,安装 PyTorch 框架和安装常用编辑器。 1.6.1 Anaconda 安装 Python 解释器是让以 Python 语言编写的代码能够被 CPU 执行的桥梁,是 Python 语言 的核心软件。用户可以从 https://www 命令安装时,可能会出现下载速度缓慢甚至连接断开的情况,需要配置 国内的 pip 源,只需要在 pip install 命令后面带上“-i 源地址”参数即可。上述命令即使用 了清华大学的 pip 源。 1.6.4 常用编辑器安装 使用 Python 语言编写程序的方式非常多,可以使用 ipython 或者 ipython notebook 方式 交互式编写代码,也可以利用 Sublime Text、PyCharm Linear(28*28, 256) 使用 Sequential 容器可以非常方便地搭建多层的网络。对于 3 层网络,我们可以通过快速 完成 3 层网络的搭建。 # 利用 Sequential 容器封装 3 个网络层,前网络层的输出默认作为下一层的输入 model = nn.Sequential( # 创建第一层,输入为 784,输出为 256 nn.Linear(28*28
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    5.11.3 AlphaDropout [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.12 层封装器 wrappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.12.1 TimeDistributed dtype: 输入所期望的数据类型,字符串表示 (float32, float64, int32…) • sparse: 一个布尔值,指明需要创建的占位符是否是稀疏的。 • tensor: 可选的可封装到 Input 层的现有张量。如果设定了,那么这个层将不会创建占位 符张量。 返回 一个张量。 例 # 这是 Keras 中的一个逻辑回归 x = Input(shape=(32,)) Lambda [source] keras.layers.Lambda(function, output_shape=None, mask=None, arguments=None) 将任意表达式封装为 Layer 对象。 例 # 添加一个 x -> x^2 层 model.add(Lambda(lambda x: x ** 2)) 关于 KERAS 网络层 64 # 添加一个网络层,返回输入的正数部分
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    些主 题的认真研究最近才进入高潮。我们希望随着深度学习理论的发展,这本书的未来版本将能够在当前版本无 法提供的地方提供见解。 有时,为了避免不必要的重复,我们将本书中经常导入和引用的函数、类等封装在d2l包中。对于要保存到包 中的任何代码块,比如一个函数、一个类或者多个导入,我们都会标记为#@save。我们在 16.6节 中提供了这 些函数和类的详细描述。d2l软件包是轻量级的,仅需要以下软件包和模块作为依赖项: 人们与智能手机的日常互动就可以涉及几种机器学习模型。 现在,假如需要我们编写程序来响应一个“唤醒词”(比如“Alexa”“小爱同学”和“Hey Siri”)。我们试 着用一台计算机和一个代码编辑器编写代码,如 图1.1.1中所示。问题看似很难解决:麦克风每秒钟将收集大 约44000个样本,每个样本都是声波振幅的测量值。而该测量值与唤醒词难以直接关联。那又该如何编写程 序,令其输入麦克风采集到的原始音频片段 ngrecpely as along the time dime 9.2. 长短期记忆网络(LSTM) 347 9.2.3 简洁实现 使用高级API,我们可以直接实例化LSTM模型。高级API封装了前文介绍的所有配置细节。这段代码的运行速 度要快得多,因为它使用的是编译好的运算符而不是Python来处理之前阐述的许多细节。 num_inputs = vocab_size lstm_layer
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-Scikit-learn

    03 Scikit-learn案例 4 1.Scikit-learn概述 Scikit-learn是基于NumPy、 SciPy和 Matplotlib的开源Python机器学习 包,它封装了一系列数据预处理、机器学习算法、模型选择等工具,是数 据分析师首选的机器学习工具包。 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了, scikit-l fs.SelectKBest(score_func, k) 过滤式(Filter),保留得分排名前k的特征(top k方式) fs.RFECV(estimator, scoring=“r2”) 封装式(Wrap- per),结合交叉验证的递归特征消除法,自动选择最优特征个数 fs.SelectFromModel(estimator) 嵌入式(Embedded),从 模型中自动选择特征,任何具有coef_或者
    0 码力 | 31 页 | 1.18 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    Python 的环境的安装 ⚫Jupyter notebook 在cmd环境下,切换到代码的 目录,输入命令: jupyter notebook之后就可以 启动jupyter botebook编辑器 ,启动之后会自动打开浏览器 ,并访问http://localhost:8088 ,默认跳转到 http://localhost:8088/tree 53 ⚫Pycharm https://www
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    来源:李宏毅《1天搞懂深度学习》 32 3. 神经网络 torch.Tensor-支持自动编程操作(如backward())的多维数组。同时保持梯度的张 量。 nn.Module-神经网络模块.封装参数,移动到GPU上运行,导出,加载等 nn.Parameter-一种张量,当把它赋值给一个Module时,被自动的注册为参数。 autograd.Function-实现一个自动求导操作的前向和反向定义 在构建神经网络时,我们经常考虑将 计算安排成层,其中一些具有可学习的参数,它们将在学习过程中进行优化。 TensorFlow里,有类似Keras,TensorFlow-Slim和TFLearn这种封装了底层计算 图的高度抽象的接口,这使得构建网络十分方便。 在PyTorch中,包nn 完成了同样的功能。nn包中定义一组大致等价于层的模块。 一个模块接受输入的tesnor,计算输出的tensor,而且
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    Python 的环境的安装 ⚫Jupyter notebook 在cmd环境下,切换到代码的 目录,输入命令: jupyter notebook之后就可以 启动jupyter botebook编辑器 ,启动之后会自动打开浏览器 ,并访问http://localhost:8088 ,默认跳转到 http://localhost:8088/tree 54 ⚫Pycharm https://www
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    u t i l s . data import DataLoader 前面说过,Dataset 可以存储自定义数据,我们可以继承 Dataset 类,在子类中实现一些固定 功能的函数,这样就相当于封装了自己的数据为 Dataset 类型。为了方便起见,我们先描述如何 使用预加载数据,然后第二章就开始构建神经网络模型。等第四章我们再描述如何自定义数据集。 我们一次写一个完整的程序来把数据可视化一下: 运行程序,发现这些地方有分类错误的数据: 本节代码见 chapter4-3.py。 4.4 自定义 Dataset 数据集 假设我们现在已经产生了 x_data,y_data 以及 x_data2,y_data2,我们要把它们进行封装。 我们只需要继承 Dataset,然后实现三个函数即可,即初始化函数,求长度的函数以及根据索引返 回某一个样本的函数: from torch . u t i l s . data import
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 pytorch 入门笔记-03- 神经网络

    回顾: ● torch.Tensor:一个用过自动调用backward() 实现支持自动梯度计算的多维数组 ,并且保存关于 个向量的梯度 w.r.t. ● nn.Module:神经网络模块。封装参数、移动到 GPU 上运行、导出、加载等。 ● nn.Parameter:一种变量,当把它赋值给一个Module 时,被自动 地注册为一个参数。 ● autograd.Function:实现一
    0 码力 | 7 页 | 370.53 KB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    MPI TreeModel SQL MapReduce Blink  场景丰富: 图像/视频/推荐/搜索  大数据+大模型: Model Zoo  跨场景+跨模态  开箱即用: 封装复杂性  白盒化, 可扩展性强  积极对接开源系统+模型 FTRL SGD Adam Solutions Librarys 优势: Components Framework EasyVision
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
PyTorch深度学习Keras基于Python深度学习动手v2机器课程温州大学Scikitlearn01引言03入门连接神经网络神经网神经网络实战pytorch笔记阿里云上建模实践程孟力
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩