积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(39)机器学习(39)

语言

全部中文(简体)(38)英语(1)

格式

全部PDF文档 PDF(39)
 
本次搜索耗时 0.063 秒,为您找到相关结果约 39 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Keras: 基于 Python 的深度学习库

    Keras: 基于 Python 的深度学习库 Keras: The Python Deep Learning library* Author: Keras-Team Contributor: 万 震 (WAN Zhen) � wanzhenchn � wanzhen@cqu.edu.cn 2018 年 12 月 24 日 *Copyright © 2018 by Keras-Team Keras-Team 前 言 整理 Keras: 基于 Python 的深度学习库 PDF 版的主要原因在于学习 Keras 深度学习库时方 便本地查阅,下载最新 PDF 版本请访问: https://github.com/wanzhenchn/keras-docs-zh。 感谢 keras-team 所做的中文翻译工作,本文档制作基于此处。 严正声明:本文档可免费用于学习和科学研究,可自由传播,但切勿擅自用于商业用途,由 Otherwise, the contributor is not responsible for the consequences. 目录 I 目录 1 Keras: 基于 Python 的深度学习库 1 1.1 你恰好发现了 Keras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 指导原则
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    结、归纳出一些逻辑规则,并将逻辑规则以计算机程序的方式实现,来开发出智能系统。 但是这种显式的规则往往过于简单,并且很难表达复杂、抽象的概念和规则。这一阶段被 称为推理期。 1970 年代,科学家们尝试通过知识库加推理的方式解决人工智能,通过构建庞大复杂 的专家系统来模拟人类专家的智能水平。这些明确指定规则的方式存在一个最大的难题, 就是很多复杂、抽象的概念无法用具体的代码实现。比如人类对图片的识别、对语言的理 13 是一个基于 Python 语言、定位底层运算的计算库,Theano 同时支持 GPU 和 CPU 运 算。由于 Theano 开发效率较低,模型编译时间较长,同时开发人员转投 TensorFlow 等原因,Theano 目前已经停止维护。 ❑ Scikit-learn 是一个完整的面向机器学习算法的计算库,内建了常见的传统机器学习算 法支持,文档和案例也较为丰富,但是 Scikit-learn CPU。由于开发时间较早,在业界的知名度较高,2017 年 Facebook 推出了 Caffe 的升级版本 Cafffe2,Caffe2 目前已经融入到 PyTorch 库中。 ❑ Torch 是一个非常优秀的科学计算库,基于较冷门的编程语言 Lua 开发。Torch 灵活性 较高,容易实现自定义网络层,这也是 PyTorch 继承获得的优良基因。但是由于 Lua 语言使用人群较少,Torch
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    CHAPTER1 文档 1.1 安装 要快速上手 Qwen1.5,您可以从 Hugging Face 安装 transformers 库,并使用 Qwen1.5 Collection 中的模型。 我们建议您安装最新版本的 transformers 库,或者至少安装 4.37.0 版本。 1.1.1 Pip 安装 pip install transformers -U 1.1.2 Conda Transformers 实现 Chat Qwen1.5 最重要同时也最简单的用途是通过 transformers 库实现 Chat 功能。在本文档中,我们将展示如何在 流式模式或非流式模式下与 Qwen1.5-7B-Chat 进行对话。 1.3.1 基本用法 你只需借助 transformers 库编写几行代码,就能与 Qwen1.5-Chat 进行对话。实质上,我们通过 from_pretrained torch_dtype="auto", device_map="auto", attn_implementation="flash_attention_2", ) 请 注 意, 原 Qwen 仓 库 中 的 旧 方 法 chat() 现 在 已 被 generate() 方 法 替 代。 这 里 使 用 了 apply_chat_template() 函数将消息转换为模型能够理解的格式。其中的
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    实人认证: 卡证识别 + 人脸检测 + 活体检测 + 人脸 识别 … 模型构建: 问题: ✗ 方案复杂周期长/见效慢 ✗ 细节多难免踩坑 解决方案: 标准化  标准化模型库  标准化解决方案 1.方案复杂 图像 搜索 推荐 语音 视频理解 NLP 广告 CNN RNN GNN MLP Tensorflow PyTorch Parameter Server MPI MPI TreeModel SQL MapReduce Blink  场景丰富: 图像/视频/推荐/搜索  大数据+大模型: Model Zoo  跨场景+跨模态  开箱即用: 封装复杂性  白盒化, 可扩展性强  积极对接开源系统+模型 FTRL SGD Adam Solutions Librarys 优势: Components Framework EasyVision 交互式建模(DSW) • JupyterLab、WebIDE • 多框架兼容 • 可视化+tensorboard • 图像、视频、文本、 语音标注 • 多场景模板:物体检 测、语音识别 • 数据集管理 • 主动学习 • 智能标注 itags AI SaaS服务(OCR、语音识别、推荐系统、金融风控、疾病预测等) Infrastructure PAI平台(Platform of Artificial
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    效率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 5.2 参数管理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 5.2 安装CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755 16.3.3 安装库以运行代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757 16.3.4 远程运行Jupyter笔记本 良好的工具的支持。关键思想应该被清楚地提炼出来,尽可能减少需要让新的从业者跟上时代的入门时间。 成熟的库应该自动化常见的任务,示例代码应该使从业者可以轻松地修改、应用和扩展常见的应用程序,以 满足他们的需求。以动态网页应用为例。尽管许多公司,如亚马逊,在20世纪90年代开发了成功的数据库驱 动网页应用程序。但在过去的10年里,这项技术在帮助创造性企业家方面的潜力已经得到了更大程度的发挥,
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-Scikit-learn

    1 2022年01月 机器学习-机器学习库Scikit-learn 黄海广 副教授 2 本章目录 01 Scikit-learn概述 02 Scikit-learn主要用法 03 Scikit-learn案例 3 1.Scikit-learn概述 01 Scikit-learn概述 02 Scikit-learn主要用法 03 Scikit-learn案例 Scikit-learn是基于NumPy、 SciPy和 Matplotlib的开源Python机器学习 包,它封装了一系列数据预处理、机器学习算法、模型选择等工具,是数 据分析师首选的机器学习工具包。 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了, scikit-learn简称sklearn,支持包括分类,回归,降维和聚类四大机器学 习算法。还包括了特征提取,数据处理和模型评估三大模块。 fs.SelectKBest(score_func, k) 过滤式(Filter),保留得分排名前k的特征(top k方式) fs.RFECV(estimator, scoring=“r2”) 封装式(Wrap- per),结合交叉验证的递归特征消除法,自动选择最优特征个数 fs.SelectFromModel(estimator) 嵌入式(Embedded),从 模型中自动选择特征,任何具有coef_或者
    0 码力 | 31 页 | 1.18 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    u t i l s . data import DataLoader 前面说过,Dataset 可以存储自定义数据,我们可以继承 Dataset 类,在子类中实现一些固定 功能的函数,这样就相当于封装了自己的数据为 Dataset 类型。为了方便起见,我们先描述如何 使用预加载数据,然后第二章就开始构建神经网络模型。等第四章我们再描述如何自定义数据集。 我们一次写一个完整的程序来把数据可视化一下: s s X = X. cuda () 14 2.2. 使用 cuda 来训练网络 y = y . cuda () . . . . . . 我们不用担心数据释放的问题,因为 cuda 会自动管理不再引用它的内存空间,因此每轮训 练完以后,cuda 内的内存都会被重新赋值使用,而不会使 cuda 的内存不断增长。 需要注意的是,把数据移动到 cuda 中也是比较浪费时间的,所以实际情况如何选择网络训 运行程序,发现这些地方有分类错误的数据: 本节代码见 chapter4-3.py。 4.4 自定义 Dataset 数据集 假设我们现在已经产生了 x_data,y_data 以及 x_data2,y_data2,我们要把它们进行封装。 我们只需要继承 Dataset,然后实现三个函数即可,即初始化函数,求长度的函数以及根据索引返 回某一个样本的函数: from torch . u t i l s . data import
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 谭国富:深度学习在图像审核的应用

    自建识别模型 加大审核人力 一旦出现严重违规平 台面临停业整顿风险 昂贵的专业机器、AI专家, 样本不足导致识别模型漏 过模型调优难度大 人力审核疲劳容易发 生漏过,人力招聘、 管理需要耗费不小成 本 识别种类 完备 节约成本 节省审核 人力 减少人工 漏审 技术诉求:自动识别图片或视频中出现的文 字、二维码、logo等内容以及违规人像、淫 秽、血腥、暴力、极端主义、恐怖主义图像 人群聚集 火灾 血腥 极端主义、恐怖主义标识 SACC2017 内容识别 – 人脸识别 l 政治敏感人物识别, 直播, 视频等场景 Ø 上亿级别的人脸检索,秒级的检索速度从黑名 单,白名单数据库中返回目标人脸信息。 Ø 技术指标:优图人脸识别通过传统方法和深度 学习技术结合,以空间面孔墙和微众银行远程 核身为基础,在性能上达到LFW 99.80%。 Ø QQ,微云等: 非法设置领导人头像, 非法植入领导人,政府国 际公众人物, 明星等等。 l 人脸识别核身技术 政治人物识别 无版权人物识别 检索结果:奥巴马 相似度:98% 政治人物 不在黑名单 检索结果:林志玲 相似度:99% 在版权库 SACC2017 图片场景识别 l 社交图像分类应用:微云,相册管家 Ø 标签体系:面向社交领域的热词标签200余种, 涵盖人物、风景、人造物、 建筑、动植物、食物等9个大类 。 Ø 技
    0 码力 | 32 页 | 5.17 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》3-方案设计篇:如何设计可落地的AI解决方案

    TensorFlow 2项目进阶实战》视频课程 • 行业背景:AI新零售是什么? • 用户需求:线下门店业绩如何提升? • 长期⽬目标:货架数字化与业务智能化 • 短期目标:自动化陈列审核和促销管理 • 方案设计:基于深度学习的检测/分类的AI流水线 • 方案交付:支持在线识别和API调用的 AI SaaS 目录 行业背景:AI新零售是什么? 人类零售演进史 ——《C时代 新零售——阿里研究院新零售研究报告》 产品价格指数 • 促销执行统计 客户需求:棚格图推荐设计与销量预测 如何落地项目第一期? 短期目标:自动化陈列审核和促销管理 业务落地基础:货架数字化 SKU 种类 数量 位置 品类 占比 货架 设计 场景 层数 编号 业务落地:自动化陈列审核和促销管理 陈列 必分销 新品 纯度 排面 SKU 种类 数量 位置 品类 占比 货架 设计 场景 层数 数据集 模型训练 模型管理 AutoML AI 物品库 服务管理 模型压缩 棚格图识别 货架巡检 商品推荐 陈列审核 入库审计 货物盘点 构件识别 CAD解析 规则审查 户型图识别 视频盘点 自动分拣 细粒度识别 目标检测 多目标跟踪 多标签分类 规 则 引 擎 数 据 沉 淀 服 务 监 控 快速消费品 建筑图纸 五金零配件 医疗器件 库码标签 零售百货 通用OCR
    0 码力 | 49 页 | 12.50 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    HDFS 数据 通道 训练系统 召回 业务服务 排序 混排 模型 管理 上线 管理 ⽆量 RGW/Cos/ kafka 样本 存储 实时样本 ⽣成服务 离线样本 ⽣成任务 数据 通道 特征 处理 模型 登记 模型 上线 预测 请求 数据 落地 ⽆量 ⽤户⾏为数据上报 特征 库 内容 获取 请求 � 推荐场景的重要性 � PCG的图⽂,视频推荐(腾讯视频,腾讯新 异步storage线程,⽀持基于冷热数据的多级存储。内存消 耗下降30%-70% 磁盘 训练 Lookup+ pooling 算⼦融合 Unique keys Storage 近期训练 参数管理 需保持顺 序,以保证 训练效果 样本读取 样本解析 基于GPU的多级存储训练:更⾼的性价⽐ � 推荐模型GPU训练的挑战 � 显存(A100最⼤80GB)放不下TB级的模型 � GPU多线程并⾏计算能⼒对稀疏数据不友好 实时模型,KB级,秒(Kafka) 分布式 Serving集群 推理节点 分布式 Serving集群 推理节点 召回索引服务 业务服务 1. 获取⽤户向量 2. 向量召回 异步 刷库 训练端⽣成⾼频参数集 独⽴通道上线 降低请求⽑刺 Feature 2.1: 短时间内只 有部分参数被⽤到 Feature 2.2 Hotkey变化慢 ⼤规模推荐模型深度学习系统基本解决维度
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
共 39 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
Keras基于Python深度学习PyTorch深度学习AI模型千问qwen中文文档阿里云上建模实践程孟力动手v2机器课程温州大学Scikitlearn连接神经网络神经网神经网络实战pytorch国富图像审核应用TensorFlow快速入门方案设计方案设计如何落地解决解决方案推荐基础特点大规规模大规模系统
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩