Keras: 基于 Python 的深度学习库5.11.3 AlphaDropout [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.12 层封装器 wrappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.12.1 TimeDistributed Model(inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output]) 现在编译模型,并给辅助损失分配一个 0.2 的权重。如果要为不同的输出指定不同的 loss_weights 或 loss,可以使用列表或字典。在这里,我们给 loss 参数传递单个损失函数,这 个损失将用于所有的输出。 model dtype: 输入所期望的数据类型,字符串表示 (float32, float64, int32…) • sparse: 一个布尔值,指明需要创建的占位符是否是稀疏的。 • tensor: 可选的可封装到 Input 层的现有张量。如果设定了,那么这个层将不会创建占位 符张量。 返回 一个张量。 例 # 这是 Keras 中的一个逻辑回归 x = Input(shape=(32,))0 码力 | 257 页 | 1.19 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112Linear(28*28, 256) 使用 Sequential 容器可以非常方便地搭建多层的网络。对于 3 层网络,我们可以通过快速 完成 3 层网络的搭建。 # 利用 Sequential 容器封装 3 个网络层,前网络层的输出默认作为下一层的输入 model = nn.Sequential( # 创建第一层,输入为 784,输出为 256 nn.Linear(28*28 return torch.max(x, torch.zeros_like(x)) 用同样的方法完成第二个和第三个非线性函数层的前向计算,输出层可以不使用 ReLU 激 活函数,这里将三层的计算过程封装到 forward 函数中: def forward(x): # 手动实现 3 层网络层的前向计算 x = relu(x@w1.t()+b1) # 第一层 x fc4(h3) # 通过输出层得到网络输出 对于这种数据依次向前传播的网络,也可以通过 Sequential 容器封装成一个网络大类 对象,调用大类的前向计算函数一次即可完成所有层的前向计算,使用起来更加方便,实 现如下: # 通过 Sequential 容器封装为一个网络类 model = nn.Sequential( nn.Linear(784, 256), # 创建隐藏层0 码力 | 439 页 | 29.91 MB | 1 年前3
动手学深度学习 v2.0些主 题的认真研究最近才进入高潮。我们希望随着深度学习理论的发展,这本书的未来版本将能够在当前版本无 法提供的地方提供见解。 有时,为了避免不必要的重复,我们将本书中经常导入和引用的函数、类等封装在d2l包中。对于要保存到包 中的任何代码块,比如一个函数、一个类或者多个导入,我们都会标记为#@save。我们在 16.6节 中提供了这 些函数和类的详细描述。d2l软件包是轻量级的,仅需要以下软件包和模块作为依赖项: �}两类。回归是训练一个回归函数来输出一个数值;分类是训练一个分类器来 输出预测的类别。 然而模型怎么判断得出这种“是”或“不是”的硬分类预测呢?我们可以试着用概率语言来理解模型。给定 一个样本特征,模型为每个可能的类分配一个概率。比如,之前的猫狗分类例子中,分类器可能会输出图像 12 https://en.wikipedia.org/wiki/Netflix_Prize 1.3. 各种机器学习问题 23 是猫的概率为0 求我们输出字 母表中的前5个字母,返回“A、B、C、D、E”和“C、A、B、E、D”是不同的。即使结果集是相同的,集内 的顺序有时却很重要。 该问题的一种可能的解决方案:首先为集合中的每个元素分配相应的相关性分数,然后检索评级最高的元素。 PageRank15,谷歌搜索引擎背后最初的秘密武器就是这种评分系统的早期例子,但它的奇特之处在于它不依 赖于实际的查询。在这里,他们依靠一个简单的相0 码力 | 797 页 | 29.45 MB | 1 年前3
机器学习课程-温州大学-Scikit-learn03 Scikit-learn案例 4 1.Scikit-learn概述 Scikit-learn是基于NumPy、 SciPy和 Matplotlib的开源Python机器学习 包,它封装了一系列数据预处理、机器学习算法、模型选择等工具,是数 据分析师首选的机器学习工具包。 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了, scikit-l fs.SelectKBest(score_func, k) 过滤式(Filter),保留得分排名前k的特征(top k方式) fs.RFECV(estimator, scoring=“r2”) 封装式(Wrap- per),结合交叉验证的递归特征消除法,自动选择最优特征个数 fs.SelectFromModel(estimator) 嵌入式(Embedded),从 模型中自动选择特征,任何具有coef_或者0 码力 | 31 页 | 1.18 MB | 1 年前3
机器学习课程-温州大学-03深度学习-PyTorch入门来源:李宏毅《1天搞懂深度学习》 32 3. 神经网络 torch.Tensor-支持自动编程操作(如backward())的多维数组。同时保持梯度的张 量。 nn.Module-神经网络模块.封装参数,移动到GPU上运行,导出,加载等 nn.Parameter-一种张量,当把它赋值给一个Module时,被自动的注册为参数。 autograd.Function-实现一个自动求导操作的前向和反向定义 在构建神经网络时,我们经常考虑将 计算安排成层,其中一些具有可学习的参数,它们将在学习过程中进行优化。 TensorFlow里,有类似Keras,TensorFlow-Slim和TFLearn这种封装了底层计算 图的高度抽象的接口,这使得构建网络十分方便。 在PyTorch中,包nn 完成了同样的功能。nn包中定义一组大致等价于层的模块。 一个模块接受输入的tesnor,计算输出的tensor,而且0 码力 | 40 页 | 1.64 MB | 1 年前3
全连接神经网络实战. pytorch 版u t i l s . data import DataLoader 前面说过,Dataset 可以存储自定义数据,我们可以继承 Dataset 类,在子类中实现一些固定 功能的函数,这样就相当于封装了自己的数据为 Dataset 类型。为了方便起见,我们先描述如何 使用预加载数据,然后第二章就开始构建神经网络模型。等第四章我们再描述如何自定义数据集。 我们一次写一个完整的程序来把数据可视化一下: 运行程序,发现这些地方有分类错误的数据: 本节代码见 chapter4-3.py。 4.4 自定义 Dataset 数据集 假设我们现在已经产生了 x_data,y_data 以及 x_data2,y_data2,我们要把它们进行封装。 我们只需要继承 Dataset,然后实现三个函数即可,即初始化函数,求长度的函数以及根据索引返 回某一个样本的函数: from torch . u t i l s . data import0 码力 | 29 页 | 1.40 MB | 1 年前3
经典算法与人工智能在外卖物流调度中的应用外卖订单智能调度系统发展历程 6 人工派单模式 • 调度员根据订单地址和骑士 位置来进行订单分配 • 人力调度派单峰值为每人 800单/天 调度 系统 3.0 云端分组派单模式 A 组 B 组 • 系统综合考虑各因素进行 订单分组,然后再指派给 合适的骑士 订单云端分组 整体最优分配 调度 系统 4.0 深度学习智能模式 • 出餐时间估算更准,缩短 骑士到店等待时间,节省 根据商圈压力调整: 3 分配方案 12 Greedy + 多轮KM算法分配方案 • Greedy分配解决特殊业务需求相关 • KM算法找到其余全局最优的分配方案 订单 骑士 订单 骑士 4 KM求解骑士和订单全局最优的分配 • 调度系统先对骑士和订单组(根据骑士的位置、身上的单量 等)进行打分,得到订单组和骑士的打分矩阵,然后根据业 务需求优先分配指定订单,其他的则根据KM算法找到骑士和 算法找到骑士和 订单的最优分配方案 KM算法 (1) 初始化可行标杆 (2) 用匈牙利算法寻找完备匹配 (3) 若未找到完备匹配则修改可行标杆 (4) 重复(2)(3)直到找到相等子图的完备匹配 供需平衡 13 5.1 配送时长预估模型 • 基于现有状况、订单增速、消 化速度、天气、当前手段等多 维特征,使用XGBoost模型回 归预测未来五分钟进单的平均 配送时长 • 分商圈、分时段、多模型的精0 码力 | 28 页 | 6.86 MB | 1 年前3
TensorFlow on Yarn:深度学习遇上大数据提交脚本示例(分布式版本):� TensorFlow on Yarn设计 Yarn首页作业信息:� 作业类型 集群GPU资源概况 作业分配到的GPU数量 TensorFlow on Yarn设计 TensorFlow作业AM页面:� Container所在的机器� 分配到的GPU物理设备号� tensorboard url链接� Container角⾊� Container当前状态� 训练中保存的中间模型� 集成TensorFlow到Yarn面临的特定问题:� • 如何自组织ClusterSpec信息� • 训练数据的划分� • 如何启动Tensorboard服务� • 如何降低迁移成本� • 已分配的物理GPU设备号到用户态GPU设备号的映射� TensorFlow on Yarn技术细节揭秘 自动构建ClusterSpec的流程图:� TensorFlow on Yarn技术细节揭秘 job_name = os.environ[“TF_ROLE”] task_index = int(os.environ["TF_INDEX"]) TensorFlow on Yarn技术细节揭秘 已分配的物理GPU设备号到用户态GPU设备号的映射:� TensorFlow on Yarn技术细节揭秘 TensorFlow on Yarn系统架构图:� TensorFlow on Yarn技术细节揭秘0 码力 | 32 页 | 4.06 MB | 1 年前3
pytorch 入门笔记-03- 神经网络回顾: ● torch.Tensor:一个用过自动调用backward() 实现支持自动梯度计算的多维数组 ,并且保存关于 个向量的梯度 w.r.t. ● nn.Module:神经网络模块。封装参数、移动到 GPU 上运行、导出、加载等。 ● nn.Parameter:一种变量,当把它赋值给一个Module 时,被自动 地注册为一个参数。 ● autograd.Function:实现一0 码力 | 7 页 | 370.53 KB | 1 年前3
阿里云上深度学习建模实践-程孟力MPI TreeModel SQL MapReduce Blink 场景丰富: 图像/视频/推荐/搜索 大数据+大模型: Model Zoo 跨场景+跨模态 开箱即用: 封装复杂性 白盒化, 可扩展性强 积极对接开源系统+模型 FTRL SGD Adam Solutions Librarys 优势: Components Framework EasyVision0 码力 | 40 页 | 8.51 MB | 1 年前3
共 23 条
- 1
- 2
- 3













