【PyTorch深度学习-龙龙老师】-测试版202112b, w = step_gradient(b, w, np.array(points), lr) loss = mse(b, w, points) # 计算当前的均方差,用于监控训练进度 if step%50 == 0: # 打印误差和实时的 w,b 值 print(f"iteration:{step}, loss:{loss} 预览版202112 3.8 手写数字图片识别体验 11 nn.Linear(28*28, 256) 使用 Sequential 容器可以非常方便地搭建多层的网络。对于 3 层网络,我们可以通过快速 完成 3 层网络的搭建。 # 利用 Sequential 容器封装 3 个网络层,前网络层的输出默认作为下一层的输入 model = nn.Sequential( # 创建第一层,输入为 层的神经网络表 达能力较强,手写数字图片识别任务相对简单,误差值可以较快速、稳定地下降,其中, 把对数据集的所有样本迭代一遍叫作一个 Epoch,通常在间隔数个 Epoch 后测试模型的准 确率等指标,方便监控模型的训练效果。 图 3.11 MNIST 数据集的训练误差曲线 本章将线性回归模型类推到分类问题,提出了表达能力更强的三层非线性神经网络, 从而解决手写数字图片识别的问题。本0 码力 | 439 页 | 29.91 MB | 1 年前3
QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒AI+智慧城市 2015-2017 l单机、简易分布式人脸检测、跟踪、比对平台 l处理数十路到数百路监控摄像头数据 l千万级别深度学习特征检索 l行业试水 2018-2019 l云原生Cloud-Native超大规模视图存储、处理、检 索 l处理数万到数十万路,城市范围级别监控、门禁摄 像头数据 l10-100 Billion级别深度学习特征检索 - PB以上级别数据库存储 - Kubernetes在异构系统调度中的挑战 • Kubernetes版本发布快,新特性更新频繁,对异构调度的支持不断加强;但配套设施落后(e.g. Spark on K8s, GitlabCI) • 容器系统调用栈深,需要仔细验证操作系统,内核及异构设备驱动的兼容性 • Kubernetes对NUMA、异构计算、存储设备的调度能力待加强 1.6 nvidia/gpu custom scheduler0 码力 | 23 页 | 9.26 MB | 1 年前3
阿里云上深度学习建模实践-程孟力推荐引擎 PAI-REC 推荐引擎 多路召回 曝光/状态过滤 粗排/精排 策略[类目打散、流量控制、…] 实时采集后端日志 PAI-REC 配置中心 AB实验 实验工具 拉取配置 监控报警 Prometheus Grafana 读取metric 消息队列(datahub/kafka) PAI-REC平台 自动化降级 负载均衡 灰度发布 超时控制 平台支持 日志SLS 机器学习框架(PAI-TensorFlow/PAI-PyTorch/Caffe /Alink/…) 计算引擎(MaxCompute / EMR / Flink) 基础硬件(CPU/GPU/FPGA/NPU) 阿里云容器服务(ACK) • 200+组件 • 数十个场景化模版 • 所见即所得 交互式建模(DSW) • JupyterLab、WebIDE • 多框架兼容 • 可视化+tensorboard Infrastructure PAI平台(Platform of Artificial Intelligence) • 一键部署、弹性扩缩 • 多框架、多语言 • 推理优化Blade • 多维度监控+报警 • 自定义镜像 • 全托管+半托管 • 分布式训练优化 • 超大资源池 智能标注 可视化建模(Designer) 分布式训练(DLC) 在线服务(EAS) 生态市场 开发者工具0 码力 | 40 页 | 8.51 MB | 1 年前3
机器学习课程-温州大学-01深度学习-引言出农业机械穿过作物的最佳路径。另 外也可用来识别杂草和作物,有效减 少除草剂的使用量。 制造业 计算机视觉也可以帮助制造商更安 全、更智能、更有效地运行,比如预 测性维护设备故障,对包装和产品质 量进行监控,并通过计算机视觉减少 不合格产品。 交通 自动驾驶汽车需要计算机视觉。特斯拉 (Tesla)、宝马(BMW)、沃尔沃(Volvo)和奥迪 (Audi)等汽车制造商Y已经通过摄像头、激光 的环境的安装 55 Python 的主要数据类型 ⚫字符串 ⚫整数与浮点数 ⚫布尔值 ⚫日期时间 ⚫其它 56 Python 的数据结构 ⚫列表(list) 用来存储一连串元素的容器,列表用[ ]来表示,其中元素的类型可不相同。 ⚫元组(tuple) 元组类似列表,元组里面的元素也是进行索引计算。列表里面的元素的值可以修改,而元组 里面的元素的值不能修改,只能读取。元组的符号是( 图,错误图,散点图等。 https://matplotlib.org/gallery/index.html 71 Python模块-Matplotlib 图形的各元素名称如下: 绘图框 是图形的最高容器,所 有图形必须放置在绘图框中. 子图 是绘图框中所包含的图形 ,即便绘图框只包含一幅图,也 称之为子图. 元素 是组成子图的部件,从子 图最内部的数据线条到外围的坐 标轴标签等都属于元素0 码力 | 80 页 | 5.38 MB | 1 年前3
经典算法与人工智能在外卖物流调度中的应用当前配送的繁忙程度 • 天气情况.. 1 2 3 提纲 4 外卖订单的智能 调度系统 一. 智能调度系统的 大数据分析监控 二. 智能调度系统中 的人工智能 三. 提纲 5 外卖订单的智能 调度系统 一. 智能调度系统的 大数据分析监控 二. 智能调度系统中 的人工智能 三. 外卖订单智能调度系统发展历程 6 人工派单模式 • 调度员根据订单地址和骑士 位置来进行订单分配 1 2 3 4 5 提纲 16 外卖订单的智能 调度系统 一. 智能调度系统的 大数据分析监控 二. 智能调度系统中 的人工智能 三. 调度系统 智能调度系统的分析监控 17 • 真实再现调度场景细节 • 回溯定位异常调度原因,诊断调试算法 • 实时获取调度监控指标 • 及时预警引入人工干预 • 精准模拟实际订单分布情况 • 有效评估调度算法的改进效果 • 合理划分物流范围 节省调度运力,提升商户配送能力 • 云端虚拟队列,实现调度指派 • 提升物流效率 仿真系统 实时监控 时光机 寻宝系统 1 2 3 4 5 时光机系统—历史数据可视化分析 真实再现调度场景细节 回溯定位异常调度原因,诊断调试算法 18 1 实时监控系统—当前状况实时监控 19 实时获取调度监控指标 及时预警引入人工干预 2 仿真系统—未来效果仿真预测 订单 在岗骑 士数量0 码力 | 28 页 | 6.86 MB | 1 年前3
谭国富:深度学习在图像审核的应用Job 2 WK Job 2 WK Job 3 监控/启停 任务调度/资源管理 监控上报 cephfs存储集 群 本地文件系统 数据 模型/日志 client 管理数据 提取模型、 查看日志 提交/管理任务 用户 docker.oa.co m 自动拉取镜像 Redis 冷数据 热任务/监控数据/集群信息 • 任务监控与自动重启 • 分布式多机训练,不可避免遇到由于硬件/网 分布式多机训练,不可避免遇到由于硬件/网 络波动引起的异常 • 监控任务运行状况,当任务发生异常时,选 择不同的重启策略 • 集群管理与监控 • 节点心跳异常告警 • 运维工具化,快速屏蔽/启动异常机器 • 灵活的资源分配 • 支持以 GPU 或节点为粒度进行资源分配 • 用户配置任务所需最小资源 • 自动扩缩容,最大化资源使用率 • 支持不同计算框架 • 调度与任务松耦合,用户可以灵活定义任务 • 支持配置 审核没有问题的内容再呈现倒观看者的屏幕。 SACC2017 从静到动:结合视频识别能力 多物体检测 监控场景人体属性 人群密度估计 监控场景人体检测 女性 青年 长发 背面 背包 灰色衣服 青色裤子 实际: 106人 预测: 113.4人 • 结合视频监控场景, 在图像序列中, 识别图 像物体, 识别人体,人群密度,人体属性等 各种信息 • 融合图像,动作识别能力,提升审核准确率,0 码力 | 32 页 | 5.17 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波曝光,互动,点击,真实阅读等多种数据流接入并多流拼接 • 如何解决日志延时问题 • 延迟等待机制,先到先走 • 定时轮寻,最长N分钟等待 • Kafka 堆积监控,实时报警 • 如何解决内存问题 • 调整内存参数 • 关闭多余的监控点 • 如何异常处理 • 自动化监控与修复系统 • Checkpoint 节点异常修复 3 在线机器学习-实时样本生成 • 在线机器学习模型训练:Flink/Blink+WeiPS0 码力 | 36 页 | 16.69 MB | 1 年前3
《TensorFlow 2项目进阶实战》6-业务落地篇:实现货架洞察Web应⽤ORM 选型 • 搭建 AI SaaS 理论:10 分钟快速开发 AI SaaS • 搭建 AI SaaS 实战:10 分钟快速开发 AI SaaS • 交付 AI SaaS:10 分钟快速掌握容器部署 • 交付 AI SaaS:部署和测试 AI SaaS 目录 串联 AI 流程理论:商品检测与商品识别 检测模型 RetinaNet 前向转换和使用 加载检测推理模型 detector AI SaaS:10 分钟快速掌握容器部署 更新依赖 requirements.txt 为 AI SaaS 编写 Dockerfile 为 AI SaaS 构建 Docker 镜像(TF 容器外) $ docker build –t tf2-ai-saas -f ai_saas/Dockerfile . 为 AI SaaS 构建 Docker 镜像(TF 容器外) $ docker build0 码力 | 54 页 | 6.30 MB | 1 年前3
《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务中使用 TensorFlow 2 在 Jupyter Lab 中使用 TensorFlow 2 在 Jupyter Lab 中使用 TensorFlow 2 Docker 容器 与 虚拟机 虚拟机 Docker 容器 在 Docker 中使用 TensorFlow 2 在 Docker 中使用 TensorFlow 2 在 Docker 中使用 TensorFlow 2 “Hello0 码力 | 52 页 | 7.99 MB | 1 年前3
机器学习课程-温州大学-01机器学习-引言的环境的安装 54 Python 的主要数据类型 ⚫字符串 ⚫整数与浮点数 ⚫布尔值 ⚫日期时间 ⚫其它 55 Python 的数据结构 ⚫列表(list) 用来存储一连串元素的容器,列表用[ ]来表示,其中元素的类型可不相同。 ⚫元组(tuple) 元组类似列表,元组里面的元素也是进行索引计算。列表里面的元素的值可以修改,而元组 里面的元素的值不能修改,只能读取。元组的符号是( 图,错误图,散点图等。 https://matplotlib.org/gallery/index.html 70 Python模块-Matplotlib 图形的各元素名称如下: 绘图框 是图形的最高容器,所 有图形必须放置在绘图框中. 子图 是绘图框中所包含的图形 ,即便绘图框只包含一幅图,也 称之为子图. 元素 是组成子图的部件,从子 图最内部的数据线条到外围的坐 标轴标签等都属于元素0 码力 | 78 页 | 3.69 MB | 1 年前3
共 13 条
- 1
- 2













