积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(32)机器学习(32)

语言

全部中文(简体)(31)英语(1)

格式

全部PDF文档 PDF(32)
 
本次搜索耗时 0.063 秒,为您找到相关结果约 32 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    +WeiPS 样本生成和特征处理 1.配置化 2.多标签样本 3.支持高维HASH 训练预处理 1.标签选择 2.标签UDF 3.样本过滤 4.特征过滤 模型训练 1.支持回归和分类 2.支持LR、FM、 DeepFM等模型 3.支持SGD 、 FTRL 、 Adagrad等优化算法 模型评估 1.独立模型评估 2.配置化 3.UI展示 3 在线机器学习-实时模型训练 练周期模型融合 • 模型结构训练与推理兼容:在线PS与离线PS模型结构兼容,自动模型参数转换 • 稳定性优化 • 模型快照:基于ps-scheduler的周期模型版本探测与保存,模型稀疏化分片存储 • 冷备容灾:基于checkpoint机制(Local模式&Remote模式),实现参数服务的高可用,支持基于模型的异构集群迁移,支持集 群扩缩容 • 性能优化 • 通信优化:数据请求(P 引起的性能损耗,性能提升3-5倍 • 分区优化:支持多种分区策略(RANGE/HASH/MOD),解决数据倾斜导致的流量热点瓶颈问题,性能提升2-5倍 • 存储优化:自定义存储方式(ByRow&ByKey),基于row进行矩阵压缩存储,参数内存占用减少90% 3 在线机器学习-参数服务器 模型验证 离线训练 实时训练 模型训练 模型部署 在线服务 离线验证 在线发布 在线验证 在线一致性/
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    命令行,输入“nvcc - V”,即可打印当前 CUDA 的版本信息,如图 1.29 所示,如果命令无法识别,则说明安装 失败。同时也可以从系统环境变量 Path 中找到 CUDA 10.1 的路径配置,如图 1.28 所示。 图 1.27 CUDA 安装界面-3 图 1.28 CUDA 安装结果测试-1 图 1.29 CUDA 安装结果测试-2 1.6.3 PyTorch pillow pandas - i https://pypi.tuna.tsinghua.edu.cn/simple 国内使用 pip 命令安装时,可能会出现下载速度缓慢甚至连接断开的情况,需要配置 国内的 pip 源,只需要在 pip install 命令后面带上“-i 源地址”参数即可。上述命令即使用 了清华大学的 pip 源。 1.6.4 常用编辑器安装 使用 Python Text、PyCharm 和 VS Code 等综合 IDE 开发中大型 项目。本书推荐使用 PyCharm 编写和调试,使用 VS Code 交互式开发,这两者都可以免费 使用,用户自行下载安装,并配置好 Python 解释器即可。限于篇幅,这里不再赘述。 预览版202112 第 1 章 人工智能绪论 22 1.7 源代码下载 本书配套的源代码和课件等学习资料可以通过
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    内存 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 12.4.3 存储器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518 12.4.4 CPU 多机训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 12.7.4 键值存储 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547 13 计算机视觉 549 图1 中用不同的颜色呈现: 目录 3 图1: 全书结构 • 第一部分包括基础知识和预备知识。1节 提供深度学习的入门课程。然后在 2节 中,我们将快速介绍实 践深度学习所需的前提条件,例如如何存储和处理数据,以及如何应用基于线性代数、微积分和概率基 本概念的各种数值运算。3节 和 4节 涵盖了深度学习的最基本概念和技术,例如线性回归、多层感知机 和正则化。 • 接下来的五章集中讨论现代深度学习技术。5节
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    TensorFlow on Yarn设计 • 同时支持单机和分布式TensorFlow程序� • 支持GPU资源管理和调度� • 不再需要⼿动配置CluserSpec信息,仅需要设置work 和ps的数量� • 训练数据和训练模型基于HDFS统⼀存储� • 作业训练结束自动回收work、ps和Tensorboard进程� • 训练效果和性能没有损失� 基本目标:� TensorFlow Yarn系统架构图:� TensorFlow on Yarn技术细节揭秘 Yarn支持CPU调度 vs GPU调度:� CPU GPU 每个NodeManager配置可用CPU核心 数量 每个NodeManager配置可用GPU卡数 量 ResourceManager统计计数并按数量 分配 ResourceManager统计计数并按数量 分配 作业必须占用CPU资源 作业可以不需要GPU资源 org/jira/browse/YARN-5517� TensorFlow on Yarn技术细节揭秘 Yarn支持GPU调度NodeManager端实现:� NodeManager yarn-site.xml中添加配置:� � � � yarn.nodemanager.resource.gpu-cores ((2
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . 35 3.3.18 如何在 Keras 中使用 HDF5 输入? . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.19 Keras 配置文件保存在哪里? . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.20 如何在 Keras 开发过程中获取可复现的结果? . 2 从一个后端切换到另一个后端 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 14.3 keras.json 详细配置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 14.4 使用抽象 Keras 后端编写新代码 Keras 遵循减少认知困难的最佳实践:它提供一致且简单的 API,将常见用例所需的用户 操作数量降至最低,并且在用户错误时提供清晰和可操作的反馈。 • 模块化。模型被理解为由独立的、完全可配置的模块构成的序列或图。这些模块可以以尽 可能少的限制组装在一起。特别是神经网络层、损失函数、优化器、初始化方法、激活函 数、正则化方法,它们都是可以结合起来构建新模型的模块。 • 易扩展性。新
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    Retrieval Image Generation Video Caption EasyVision: 图像视频算法库 Bert TextInput Optim izer 性能优越:  分布式存储  分布式查询 功能完备:  GSL/负采样  主流图算法  异构图 (user/item/attribute)  动态图 标准化: Standard Libraries Graph-Learn: 策略[类目打散、流量控制、…] 实时采集后端日志 PAI-REC 配置中心 AB实验 实验工具 拉取配置 监控报警 Prometheus Grafana 读取metric 消息队列(datahub/kafka) PAI-REC平台 自动化降级 负载均衡 灰度发布 超时控制 平台支持 日志SLS 在线存储 Hologres/OTS BE Redis 读取数据
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    max_new_tokens=512, streamer=streamer, ) 除了使用 TextStreamer 之外,我们还可以使用 TextIteratorStreamer ,它将可打印的文本存储在一 个队列中,以便下游应用程序作为迭代器来使用: # Repeat the code above before model.generate() # Starting here, we add streamer [--use_lora␣ �→True] [--q_lora True] 为您的模型指定 ,为您的数据指定 ,并为您的 Deepspeed 配置指定 。如果您使用 LoRA 或 Q-LoRA,只需根据您的需求添加 --use_lora True 或 --q_lora True 。这是开始微调的最简单方式。如果您想 默认设置。在命令行中, 您可以通过传入参数 -m 和 -d 来分别指定模型路径和数据路径。您还可以通过传入参数 --deepspeed 来 指定 Deepspeed 配置文件。我们为您提供针对 ZeRO2 和 ZeRO3 的两种配置文件,您可以根据需求选择其中 之一。在大多数情况下,我们建议在多 GPU 训练中使用 ZeRO3,但针对 Q-LoRA,我们推荐使用 ZeRO2。 有一系列需要调节的超参数。您可以向程序传递
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 谭国富:深度学习在图像审核的应用

    App 2 App 3 SSH Job 1 Train Job 1 Val Job 2 WK Job 2 WK Job 3 监控/启停 任务调度/资源管理 监控上报 cephfs存储集 群 本地文件系统 数据 模型/日志 client 管理数据 提取模型、 查看日志 提交/管理任务 用户 docker.oa.co m 自动拉取镜像 Redis 冷数据 热任务/监控数据/集群信息 节点心跳异常告警 • 运维工具化,快速屏蔽/启动异常机器 • 灵活的资源分配 • 支持以 GPU 或节点为粒度进行资源分配 • 用户配置任务所需最小资源 • 自动扩缩容,最大化资源使用率 • 支持不同计算框架 • 调度与任务松耦合,用户可以灵活定义任务 • 支持配置 docker 镜像,完全自定义运行环 境 • 良好的用户体验 • 完善的客户端工具 • 任务进度微信提醒 SACC2017 腾讯优图-腾讯云天御 内容审核解决方案 SACC2017 针对直播 – 视频鉴黄解决方案 • 在部署了DeepEye视频直播鉴黄解决方案后,系 统对直播房间的视频流按指定的时间间隔(用户 可配置)进行截图,通过鉴黄引擎给该图片进行 鉴别,并将可疑图片和对应的房间信息回调给开 发者,开发者可以根据返回的结果信息优先给审 核人员进行审核,进行封停等进一步处理。经过 审核没有问题的内容再呈现倒观看者的屏幕。
    0 码力 | 32 页 | 5.17 MB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    AWS解决方案架构师 March 17, 2017 Amazon 的人工智能&深度学习 围绕数据的“飞轮” 机器学习 深度学习 人工智能 更多的用户 更好的产品 更多的数据 更好的分析 对象存储 数据库 数据仓库 数据流分析 商业智能 Map/Reduce 内存数据库 数据检索 点击流 用户活动 内容生成 购买 点击 喜好 传感器数据 机器学习& 人工智能 大数据 更多的用户 更好的产品 可用性& 简易性 一键获得的GPU 加速的深度学习 AWS 深度学习AMI 高达 ~40k CUDA cores MXNet TensorFlow Theano Caffe Torch 预配置的 CUDA 驱动 Anaconda, Python3 + CloudFormation 模版 + 容器镜像文件 全新的 EC2 P2 实例 | 高达16 块 GPUs ▪ 这款新实例类型包含了高达 测量两张图片中同一个人的可能性 • 为应用和设备添加人脸 验证 • 扩展了物理安全控制的 应用领域 • 客人对VIP 设施的使用 • 在线考试以及民意调查 时的用户验证 人脸识别 通过针对存储的面部向量的集合找到输入面部图像的最接近 的匹配来识别图像中的人 • 社交应用、消息类应用 中加入朋友标签 • 协助找到始终人口 • 确定可以访问敏感区域 的员工 • 在历史和媒体的档案中 找到“名人”
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12机器学习-关联规则

    应用规则:我们将创建规则并将它们应用于项集F3。现在假设最小置信值是60%。 对于I的每个子集S,输出规则 • S–>(I-S)(表示S推荐I-S) • 如果:支持度(l)/支持度(S)>=最小配置值 21 2.Apriori算法 算法案例 {1,3,5} 规则1:{1,3}–>({1,3,5}–{1,3})表示1&3–>5 置信度=支持度(1,3,5)/支持度(1,3)=2/3=66 为“模式片段”。分析了这些碎片模式的项集。因此,该方法相对减少了频繁项集 的搜索。 27 3.FP-Growth算法 FP-growth算法思想 FP-growth算法是基于Apriori原理的,通过将数据集存储在FP(Frequent Pattern)树上发现频繁项集,但不能发现数据之间的关联规则。 FP-growth算法只需要对数据库进行两次扫描,而Apriori算法在求每个潜在 的频繁项集时都 必然包括这商品本身) 40 3.FP-Growth算法 FP-Growth算法的优点 1.与Apriori算法相比,该算法只需对数据库进行两次扫描 2.该算法不需要对项目进行配对,因此速度更快。 3.数据库存储在内存中的压缩版本中。 4.对长、短频繁模式的挖掘具有高效性和可扩展性。 FP-Growth算法的缺点 1.FP-Tree比Apriori更麻烦,更难构建。 2.可能很耗资源。 3.当数据库较大时,算法可能不适合共享内存
    0 码力 | 49 页 | 1.41 MB | 1 年前
    3
共 32 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
微博在线机器学习深度实践黄波PyTorch深度学习动手v2TensorFlowonYarn遇上数据Keras基于Python阿里云上建模程孟力AI模型千问qwen中文文档国富图像审核应用亚马亚马逊AWSAIServicesOverview课程温州大学12关联规则
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩