积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(55)机器学习(55)

语言

全部中文(简体)(54)英语(1)

格式

全部PDF文档 PDF(55)
 
本次搜索耗时 0.073 秒,为您找到相关结果约 55 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-09机器学习-支持向量机

    2022年02月 机器学习-支持向量机 黄海广 副教授 2 本章目录 01 支持向量机概述 02 线性可分支持向量机 03 线性支持向量机 04 线性不可分支持向量机 3 1.支持向量机概述 01 支持向量机概述 02 线性可分支持向量机 03 线性支持向量机 04 线性不可分支持向量机 4 1.支持向量机概述 支 持 向 量 机 maximum-margin hyperplane) 。 与逻辑回归和神经网络相比,支持向量机,在学 习复杂的非线性方程时提供了一种更为清晰,更 加强大的方式。 支持向量 距离 5 1.支持向量机概述 硬间隔、软间隔和非线性 SVM 假如数据是完全的线性可分的,那么学习到的模型可以称为硬间隔支持向 量机。换个说法,硬间隔指的就是完全分类准确,不能存在分类错误的情 况。软间隔,就是允许一定量的样本分类错误。 况。软间隔,就是允许一定量的样本分类错误。 软间隔 硬间隔 线性可分 线性不可分 6 支持向量 1.支持向量机概述 算法思想 找到集合边缘上的若干数据(称为 支持向量(Support Vector)) ,用这些点找出一个平面(称为决 策面),使得支持向量到该平面的 距离最大。 距离 7 1.支持向量机概述 背景知识 任意超平面可以用下面这个线性方程来描述: ?T? + ? = 0
    0 码力 | 29 页 | 1.51 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    关英文文献时,不至于感到陌生。 尽管每天都有深度学习相关算法论文的发布,但是作者相信,深度学习的核心思想和基 础理论是共通的。本书已尽可能地涵盖其中基础、主流并且前沿的算法知识,但是仍然有很 多算法无法涵盖,读者学习完本书后,可以自行搜索相关方向的研究论文或资料,进一步学 习。 深度学习是一个非常前沿和广袤的研究领域,鲜有人士能够对每一个研究方向都有深刻 的理解。作者自认才疏学浅,略懂 → ?,其中??代表模型函数,?为模型的参数。在训练时,通过计算模型的预 测值??(?)与真实标签?之间的误差来优化网络参数?,使得网络下一次能够预测更精准。常 见的有监督学习有线性回归、逻辑回归、支持向量机、随机森林等。 无监督学习 收集带标签的数据往往代价较为昂贵,对于只有样本?的数据集,算法需 要自行发现数据的模态,这种方式叫作无监督学习。无监督学习中有一类算法将自身作为 监督信号,即模型需要学习的映射为 LSTM 被 Jürgen Schmidhuber 提出;同年双向循环 神经网络也被提出。 遗憾的是,神经网络的研究随着以支持向量机(Support Vector Machine,简称 SVM)为 代表的传统机器学习算法兴起而逐渐进入低谷,称为人工智能的第二次寒冬。支持向量机 拥有严格的理论基础,训练需要的样本数量较少,同时也具有良好的泛化能力,相比之 下,神经网络理论基础欠缺,可解释性差,很难训练深层网络,性能也相对一般。图
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    8B、4B、7B、14B 和 72B; • 针对每种尺寸提供基础模型和 Chat 模型,并确保聊天模型按照人类偏好进行校准; • 对基础模型和 Chat 模型的多语言支持 • 基础模型和聊天模型都支持多种语言; • 支持工具调用、RAG(检索增强文本生成)、角色扮演、AI Agent 等; 想了解更多信息,欢迎访问: • 博客 • GitHub • Hugging Face • ModelScope 成为可能。该库是 一个纯 C/C++ 实现,不依赖任何外部库,并且针对 x86 架构提供了 AVX、AVX2 和 AVX512 加速支持。此 外,它还提供了 2、3、4、5、6 以及 8 位量化功能,以加快推理速度并减少内存占用。对于大于总 VRAM 容量的大规模模型,该库还支持 CPU+GPU 混合推理模式进行部分加速。本质上,llama.cpp 的用途在于运行 GGUF(由 GPT 生成的统一格式)模型。欲了解更多详情,请参阅官方 UI(简称 TGW,通常被称为“oobabooga”)是一款流行的文本生成 Web 界面工具,类似 于 AUTOMATIC1111/stable-diffusion-webui 。它拥有多个交互界面,并支持多种模型后端,包括 Transformers 、 llama.cpp(通过 llama-cpp-python 实现)、ExLlamaV2 、AutoGPTQ 、AutoAWQ 、GPTQ-for-LLaMa
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测

    逻辑回归(Logistic Regression) • 决策树(Decision Tree) • 随机森林(Random Forest) • 最近邻算法(k-NN) • 朴素贝叶斯(Naive Bayes) • 支持向量机(SVM) • 感知器(Perceptron) • 深度神经网络(DNN) 前置知识:线性回归 在统计学中,线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变 量之 TensorFlow 训练模型的工作流 数据读入 数据分析 数据 规范化 创建模型 (数据流图) 创建会话 (运行环境) 训练模型 数据分析库:Pandas Pandas 是一个 BSD 开源协议许可的,面向 Python 用户的高性能和易于上手的数 据结构化和数据分析工具。 数据框(Data Frame)是一个二维带标记的数据结构,每列(column)数据类型 可以不同。我们可以将其当作电子表格或数据库表。 文件到数据框的功能。 数据可视化库:matplotlib & seaborn & mplot3d matplotlib 是一个 Python 2D 绘图库,可以生成出版物质量级别的图像和各种硬拷贝格式, 并广泛支持多种平台,如:Python 脚本,Python,IPython Shell 和 Jupyter Notebook。 seaborn 是一个基于 matplotlib的 Python 数据可视化库。它提供了更易用的高级接口,用
    0 码力 | 46 页 | 5.71 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    7 更多延迟 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 12.5 多GPU训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528 12 训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533 12.6 多GPU的简洁实现 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536 12.6.1 12.7.2 环同步(Ring Synchronization) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 12.7.3 多机训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 12.7.4 键值存储
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    数据处理 点击行为日志 阅读行为日志 曝光行为日志 数据过滤 样本拼接 定时轮询 Kafka Hdfs 样本输出 3 在线机器学习-实时样本生成 • 多流拼接 • 曝光,互动,点击,真实阅读等多种数据流接入并多流拼接 • 如何解决日志延时问题 • 延迟等待机制,先到先走 • 定时轮寻,最长N分钟等待 • Kafka 堆积监控,实时报警 • 如何解决内存问题 • 调整内存参数 在线机器学习模型训练:Flink/Blink+WeiPS 样本生成和特征处理 1.配置化 2.多标签样本 3.支持高维HASH 训练预处理 1.标签选择 2.标签UDF 3.样本过滤 4.特征过滤 模型训练 1.支持回归和分类 2.支持LR、FM、 DeepFM等模型 3.支持SGD 、 FTRL 、 Adagrad等优化算法 模型评估 1.独立模型评估 2.配置化 checkpoint Local HDFS Param Server System Model Serving System 3 在线机器学习-参数服务器 • 参数规模 • 支持百亿特征维度,千亿参数 • 模型版本 • 多模型多版本:多组实验并行执行,提高实验迭代效率 • 在线版本切换:基于ZK的版本感知机制,动态进行版本切换,实现BASE模型的热更新,实时训练与离线训练周期模型融合 • 模型
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    3 1.5 使用 TensorFlow 以外的后端 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.6 技术支持 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.7 为什么取名为 Keras . . . . 6 2.4 Keras 支持多个后端引擎,并且不会将你锁定到一个生态系统中 . . . . . . . . . . 6 2.5 Keras 拥有强大的多 GPU 和分布式训练支持 . . . . . . . . . . . . . . . . . . . . . . 6 2.6 Keras 的发展得到深度学习生态系统中的关键公司的支持 . . . . . . . . . . . 26 3.3.3 如何在 GPU 上运行 Keras? . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.4 如何在多 GPU 上运行 Keras 模型? . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.4.1 数据并行 . . . . . . . . .
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-07机器学习-决策树

    向于那些更多数值的特 征。 决策树的特点 7 算法 支持模型 树结构 特征选择 连续值处理 缺失值处理 剪枝 特征属性多次使用 ID3 分类 多叉树 信息增益 不支持 不支持 不支持 不支持 C4.5 分类 多叉树 信息增益率 支持 支持 支持 不支持 CART 分类 回归 二叉树 基尼指数 均方差 支持 支持 支持 支持 1.决策树原理 决策树的三种基本类型 建立决策树的关键 剪枝后:71.4% 后剪枝决策:剪枝 原分支“纹理”的验证集精度 剪枝前:42.9% 剪枝后:57.1% 后剪枝决策:剪枝 26 C4.5的缺点 缺点 • 剪枝策略可以再优化; • C4.5 用的是多叉树,用二叉树效率更高; • C4.5 只能用于分类; • C4.5 使用的熵模型拥有大量耗时的对数运算,连续值还有排序运算; • C4.5 在构造树的过程中,对数值属性值需要按照其大小进行排序,从中 • 划分标准的差异:ID3 使用信息增益偏向特征值多的特征,C4.5 使用信息增益 率克服信息增益的缺点,偏向于特征值小的特征,CART 使用基尼指数克服 C4.5 需要求 log 的巨大计算量,偏向于特征值较多的特征。 • 使用场景的差异:ID3 和 C4.5 都只能用于分类问题,CART 可以用于分类和回 归问题;ID3 和 C4.5 是多叉树,速度较慢,CART 是二叉树,计算速度很快;
    0 码力 | 39 页 | 1.84 MB | 1 年前
    3
  • pdf文档 超大规模深度学习在美团的应用-余建平

    美团点评用户平台研究员 自我介绍 自我介绍 2011年硕士毕业于南京大学计算机科学与技术系。毕业后曾在百度凤巢从事机器学习 工程相关的工作,加入美团后,负责超大规模机器学习系统,从无到有搭建起支持千亿 级别规模的深度学习系统,与推荐、搜索、广告业务深度合作,在算法上提供从召回到 排序的全系统优化方案,在工程上提供离线、近线、在线的全流程解决方案。 目录 • 美团超大规模模型场景简介 小规模泛化特征 • 模型  DNN > 树模型 > LR 美团超大规模模型应用场景 • 可扩展的机器学习架构  基于Parameter Server架构  数据并行 —— 支持超大规模训练集  模型并行 —— 支持超大规模模型 • 业界千亿级以上的机器学习平台  开源: PaddlePaddle、XDL,etc.  内部: Abacus、XPS, etc. • Online Learning的价值 更快数据反馈、更少资源消耗  分钟级的数据反馈  增量训练、避免batch重训带来的资源消耗 关于Online Learning MLX的模型能力 • 支持千亿级特征、千亿级样本 • 支持计算图模式,模型结构灵活多样  支持推荐、搜索、广告场景常用的深度学习模型  FTRL、FM、FFM、WDL、DCN、DeepFM、MTL等 • Optimizer  FTRL、AdaGr
    0 码力 | 41 页 | 5.96 MB | 1 年前
    3
  • pdf文档 pytorch 入门笔记-03- 神经网络

    链滴 pytorch 入门笔记 -03- 神经网络 作者:zyk 原文链接:https://ld246.com/article/1639540087993 来源网站:链滴 许可协议:署名-相同方式共享 4.0 国际 (CC BY-SA 4.0) 前言 本节主要内容是如何使用 torch.nn 包来构建神经网络。 上一讲已经讲过了 autograd,nn 包依赖 autograd 将所有参数的梯度缓存清零,然后进行随机梯度的的反向传播: net.zero_grad() out.backward(torch.randn(1, 10)) note torch.nn 只支持小批量输入。整个 torch.nn 包都只支持小批量样本,而不支持单个样本。 例如,nn.Conv2d 接受一个4维的张量,每一维分别是 sSamples * nChannels * Height * Width( 本数 * 通道数 宽)。如果你有单个样本,只需使用 input.unsqueeze(0) 来添加其它的维数 在继续之前,我们回顾一下到目前为止用到的类。 回顾: ● torch.Tensor:一个用过自动调用backward() 实现支持自动梯度计算的多维数组 ,并且保存关于 个向量的梯度 w.r.t. ● nn.Module:神经网络模块。封装参数、移动到 GPU 上运行、导出、加载等。 ● nn.Parameter:一种变量,当把它赋值给一个Module
    0 码力 | 7 页 | 370.53 KB | 1 年前
    3
共 55 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
机器学习课程温州大学09支持向量PyTorch深度学习AI模型千问qwen中文文档TensorFlow快速入门实战房价预测动手深度v2微博在线实践黄波Keras基于Python07决策决策树超大大规规模大规模超大规模美团应用建平pytorch笔记03神经网络神经网神经网络
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩