积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(44)机器学习(44)

语言

全部中文(简体)(43)英语(1)

格式

全部PDF文档 PDF(44)
 
本次搜索耗时 0.069 秒,为您找到相关结果约 44 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . . . . . . . 6 2.4 Keras 支持多个后端引擎,并且不会将你锁定到一个生态系统中 . . . . . . . . . . 6 2.5 Keras 拥有强大的多 GPU 和分布式训练支持 . . . . . . . . . . . . . . . . . . . . . . 6 2.6 Keras 的发展得到深度学习生态系统中的关键公司的支持 . . . . 26 3.3.3 如何在 GPU 上运行 Keras? . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.4 如何在多 GPU 上运行 Keras 模型? . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.4.1 数据并行 . . . . . . . . . TensorFlow 后端和 Google Cloud。 • OpenGL 支持的 GPU, 比如 AMD, 通过 PlaidML Keras 后端。 2.5 Keras 拥有强大的多 GPU 和分布式训练支持 • Keras 内置对多 GPU 数据并行的支持。 • 优步的 Horovod 对 Keras 模型有第一流的支持。 • Keras 模型可以被转换为 TensorFlow 估计器并在 Google
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    55 Python 的数据结构 ⚫列表(list) 用来存储一连串元素的容器,列表用[ ]来表示,其中元素的类型可不相同。 ⚫元组(tuple) 元组类似列表,元组里面的元素也是进行索引计算。列表里面的元素的值可以修改,而元组 里面的元素的值不能修改,只能读取。元组的符号是( ) ⚫集合(set) 集合主要有两个功能,一个功能是进行集合操作,另一个功能是消除重复元素。 集合的格式 是:set( 析环境的重要因素之一。 63 Python模块-Pandas ⚫ 基本数据结构 Series 一维数据结构,包含行索 引和数据两个部分 DataFrame 二维数据结构,包含 带索引的多列数据, 各列的数据类型可能 不同 64 Python模块-Pandas ⚫ 数据索引 df[5:10] 通过切片方式选取多行 df[col_label] or df.col_label 选取列 实际上我做的事情 76 通过这张图可以看出, 各种不同算法在输入的 数据量达到一定级数后 ,都有相近的高准确度 。于是诞生了机器学习 界的名言: 成功的机器学习应 用不是拥有最好的 算法,而是拥有最 多的数据! 数据决定一切 数据大小 准 确 率 77 参考文献 [1] Andrew Ng. Machine Learning[EB/OL]. StanfordUniversity,2014
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    实际上我做的事情 10 通过这张图可以看出, 各种不同算法在输入的 数据量达到一定级数后 ,都有相近的高准确度 。于是诞生了机器学习 界的名言: 成功的机器学习应 用不是拥有最好的 算法,而是拥有最 多的数据! 数据决定一切 数据大小 准 确 率 11 深度学习-CV(计算机视觉方向) 图像获取 提取二维图像 、三维图组、 图像序列或相 关的物理数据 ,如声波、电 磁波或核磁 共振的深度、 56 Python 的数据结构 ⚫列表(list) 用来存储一连串元素的容器,列表用[ ]来表示,其中元素的类型可不相同。 ⚫元组(tuple) 元组类似列表,元组里面的元素也是进行索引计算。列表里面的元素的值可以修改,而元组 里面的元素的值不能修改,只能读取。元组的符号是( ) ⚫集合(set) 集合主要有两个功能,一个功能是进行集合操作,另一个功能是消除重复元素。 集合的格式 是:set( 析环境的重要因素之一。 64 Python模块-Pandas ⚫ 基本数据结构 Series 一维数据结构,包含行索 引和数据两个部分 DataFrame 二维数据结构,包含 带索引的多列数据, 各列的数据类型可能 不同 65 Python模块-Pandas ⚫ 数据索引 df[5:10] 通过切片方式选取多行 df[col_label] or df.col_label 选取列
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    7 更多延迟 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 12.5 多GPU训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528 12 训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533 12.6 多GPU的简洁实现 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536 12.6.1 12.7.2 环同步(Ring Synchronization) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 12.7.3 多机训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 12.7.4 键值存储
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 Qcon北京2018-《文本智能处理的深度学习技术》-陈运文

    深度学习(CNN,RNN等) • 端到端,无需大量特征工程 • 框架通用性好,满足多领域需求 • 可以使用非监督语料训练字词向量提升效果 文本分类 CNN RNN CLSTM 序列标注 传统机器学习(CRF) • 需要大量特征工程 • 不同领域需要反复调整 深度学习(Bi-LSTM+CRF) • 多领域通用 • 输入层采用词向量,提升泛化能力 • 循环神经网络(LSTM,GRU等)能学 (NER)和一个 CNN 来进行关系分类(RC)。 基于联合标注的方法 把原来涉及到序列标注任务和分类任务的关系抽取完全变成了一个序 列标注问题。然后通过一个端对端的神经网络模型直接得到关系实体 三元组。 知识图谱关系抽取:基于联合标注 将抽取问题转换成标注任务 训练一个端到端标注模型来抽取关系 输入句子 标注框架 抽取结果 端到端标注模型 知识图谱关系抽取:基于联合标注 三类标签 • I(inside),E(end),S(single)} • 关系类型{CF,CP,...} • 关系角色{1(entity1),2(entity2)} 根据标签序列,将同样关系类型的实体合并成一个三元组作为最后的结果,如果一个句子包含一个以上同一类 型的关系,那么就采用就近原则来进行配对。 目前这套标签并不支持实体关系重叠的情况。 B-CP-1 O B-CP-2 E-CP-2 O B-CF-1
    0 码力 | 46 页 | 25.61 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    关英文文献时,不至于感到陌生。 尽管每天都有深度学习相关算法论文的发布,但是作者相信,深度学习的核心思想和基 础理论是共通的。本书已尽可能地涵盖其中基础、主流并且前沿的算法知识,但是仍然有很 多算法无法涵盖,读者学习完本书后,可以自行搜索相关方向的研究论文或资料,进一步学 习。 深度学习是一个非常前沿和广袤的研究领域,鲜有人士能够对每一个研究方向都有深刻 的理解。作者自认才疏学浅,略懂 游戏平台中的 49 个游戏上取得了 与人类相当甚至超越人类的水平;在围棋领域,DeepMind 提出的 AlphaGo 和 AlphaGo Zero 智能程序相继打败人类顶级围棋专家李世石、柯洁等;在多智能体协作的 Dota2 游戏 平台,OpenAI 开发的 OpenAI Five 智能程序在受限游戏环境中打败了 TI8 冠军队伍 OG 队,展现出了大量专业级的高层智能操作。图 1.9 列出了 2006 Imitation Learning、Meta Learning、Few-shot Learning 等方向上取得 了不少进展。美国波士顿动力公司在机器人应用中取得喜人的成就,其制造的机器人在复 杂地形行走、多智能体协作等任务上表现良好(图 1.19)。 自动驾驶(Autonomous Driving) 被认为是强化学习短期内能技术落地的一个应用方 向,很多公司投入大量资源在自动驾驶上,如百度、Uber、Google
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-10深度学习-人脸识别与风格迁移

    − ?(?(?))||2 2较小 如果?(?), ?(?)不是同一个人,则) = ||?(?(?)) − ?(?(?))||2 2较大 10 1.人脸识别概述 Triplet 损失 三元组损失,它代表你通常会同时看三张图片,你需要看Anchor图片 、Postive图片,还有Negative图片,我要把Anchor图片、Positive 图片和Negative图片简写成?、?、?。 照片,组成了整个数据集。 如果每个人只有1张照片,那么根本没法训练这个系统。 14 1.人脸识别概述 Triplet 损失 为了构建一个数据集,你要做的就是尽可能选择难训练的三元组?、? 和?。具体而言,你想要所有的三元组都满足这个条件 (?(?, ?) + ? ≤ ?(?, ?)) 学习算法会尽可能地使右边这个式子变大(?(?, ?)),或者使左边这个式子 (?(?, ?))变小,这样左右两边至少有一个
    0 码力 | 34 页 | 2.49 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-numpy使用总结

    22, 24], [54, 55]] [40, 42, 44]] #上面方法对于数组的切片都 是共享原数组的储存空间的。 21 多维数组 如果我们想创立原数组的副本,我们可以用整数元组,列表,整数数组, 布尔数组进行切片。 22 结构数组 C语言中可以通过struct关键字定义结构类型。NumPy中也有类似的结构数组。 > persontype = np.dtype({
    0 码力 | 49 页 | 1.52 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    训练推理:  高qps, 低rt  支持超大模型  性价比 流程长、环节多:  推荐场景: 召回 + 粗排 + 精排 + 多样性/冷启动  实人认证: 卡证识别 + 人脸检测 + 活体检测 + 人脸 识别 … 模型构建: 问题: ✗ 方案复杂周期长/见效慢 ✗ 细节多难免踩坑 解决方案: 标准化  标准化模型库  标准化解决方案 1.方案复杂  训练优化:  数据并行  模型并行  推理优化: Blade  推荐模型优化: 千亿特征 3. 工程优化 RingAllReduce + 层级级联 EasyVision 多机多卡性能对比 工程优化: 数据并行  M6模型  Transformer模型: RapidFormer  人脸分类模型: 超大softmax  3D卷积模型 M6模型 RapidFormer性能 解决方案:  智能标注  自监督学习  多模态预训练  小样本学习 解决方案: 智能标注系统iTags 智能抠图 智能抠图 智能贴合 智能预标注 + 人机协同 解决方案: 自监督学习 Moby: swin-transformer based moco. Image features 推荐模型特征 图像搜索 解决方案: 多模态预训练 Swin transformer
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 复杂环境下的视觉同时定位与地图构建

    在未知环境中定位自身方位并同时构建环境三维地图 • 广泛的应用 • 增强现实、虚拟现实 • 机器人、无人驾驶 SLAM常用的传感器 • 红外传感器:较近距离感应,常用于扫地机器人。 • 激光雷达:单线、多线等。 • 摄像头:单目、双目、多目等。 • 惯性传感器(英文叫IMU,包括陀螺仪、加速度计等):智能手机标配。 常见的单目摄像头 激光雷达 普通手机摄像头也可作为传感器 双目摄像头 微软Kinect彩色-深度(RGBD)传感器 • 双目摄像头 • 多目摄像头 • 其它辅助传感器 • 廉价IMU、GPS • 深度传感器 • 优势 • 硬件成本低廉 • 小范围内定位精度较高 • 无需预先布置场景 基本原理:多视图几何 投影函数 主要模块 • 特征跟踪 • 获得一堆特征点轨迹 • 相机姿态恢复与场景三维结构恢复 • 求解相机参数和三维点云 • 如何处理循环回路序列和多视频序列? • 如何高效高精度地处理大尺度场景? 如何处理动态场景? • 如何处理快速运动和强旋转? 复杂环境下的主要挑战 我们课题组的工作 • 面向大尺度场景的运动恢复结构 • ENFT-SFM:能够高效地处理大尺度场景下拍摄的循环回路和多 视频序列。 • 单目视觉的同时定位与地图构建 • ENFT-SLAM:能在大尺度场景下实时稳定工作、在线回路闭合; • RDSLAM:能在动态场景下稳定工作; • RKSLAM:可以实时运行在移动设备上,并能处理快速运动和强
    0 码力 | 60 页 | 4.61 MB | 1 年前
    3
共 44 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
Keras基于Python深度学习机器课程温州大学01引言动手v2Qcon北京2018文本智能处理技术陈运文PyTorch深度学习10人脸识别人脸识别风格迁移numpy使用总结阿里云上建模实践程孟力复杂环境视觉同时定位地图构建
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩