超大规模深度学习在美团的应用-余建平超大规模机器学习MLX MLX平台目标 MLX平台架构 • 模型场景应用 召回模型 排序模型 超大规模模型的有效性 • VC维理论 描述模型的学习能力:VC维越大模型越复杂,学习能力越强 机器学习能力 = 数据 + 特征 + 模型 • 数据 海量数据: 美团的亿级用户、千万级POI • 特征 大规模离散特征 > 小规模泛化特征 • 模型 DNN • Online Learning的价值 用户的近期行为,更能表现意图和偏好 增强新item的模型感知能力 • 更快数据反馈、更少资源消耗 分钟级的数据反馈 增量训练、避免batch重训带来的资源消耗 关于Online Learning MLX的模型能力 • 支持千亿级特征、千亿级样本 • 支持计算图模式,模型结构灵活多样 支持推荐、搜索、广告场景常用的深度学习模型 支持外部eval工具,计算MAP、NDCG MLX的模型能力 • 提供离线、近线、在线全流程解决方案,各阶段提供扩展方案,降低算法迭代成本; • 支持Online Learning,提供从近线到在线的模型数据通路; • 提供从召回到排序全流程的模型解决方案,为业务提供最佳实践; • 提供系统的平台化工具,为用户提供易用的界面操作; MLX模型能力 MLX平台架构 MLX平台架构 • 基于Worker0 码力 | 41 页 | 5.96 MB | 1 年前3
阿里云上深度学习建模实践-程孟力训练: 推理: Ring All-reduc同步训练 [HybridBackend/SOK] 特征选择 [VariationalDropout] 通信优化 [GRPC++] 实时训练 [增量更新] 混合精度 [bf16] 工程优化: 千亿特征优化 模型蒸馏 AVX/SSE优化 Graph优化 [User Graph去重] 内存Allocate优化 ParallelStringOp Sequence Feature [side info] Op Fusion [hash + embedding] Overlap Execution [FG OP化] Item Feature增量更新 3.工程优化复 杂 4.数据获取困 难 挑战 深度模型是非线性的: • 参数很多 • 参数敏感 • 不同场景的数据上差异大 从FM到DeepFM rt 增 加了10倍怎么优化? • 超大资源池 智能标注 可视化建模(Designer) 分布式训练(DLC) 在线服务(EAS) 生态市场 开发者工具 • CLI • PAIFlow • OpenAPI AI能力 体验中心 开源 PAI平台(Platform of Artificial Intelligence) Deep Learning Container 数据量大而全 先进的模型结构 业务场景复杂0 码力 | 40 页 | 8.51 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112解、喜欢并进入到人工智能行业中来,因此作者试图从分析人工智能中的简单问题入手,一 步步地提出设想、分析方案以及实现方案,重温当年科研工作者的发现之路,让读者身临其 境式的感受算法设计思想,从而掌握分析问题、解决问题的能力。这种方式也是对读者的基 础要求较少的,读者在学习本书的过程中会自然而然地了解算法的相关背景知识,体会到知 识是为了解决问题而生的,避免陷入为了学习而学习的窘境。 尽管作者试图将读者的基础要求降 框架在人工智能行 业中的重要地位。 本书基于清华大学出版社出版的《TensorFlow 深度学习—深入理解人工智能算法》一书 进行二次撰写,代码部分完全基于 PyTorch 进行实现。考虑到本人能力有限、行文仓促,可 以预见地,本书会存在部分语句表达不准确、部分素材尚未创作完成、部分参考引用未能及 时补充、甚至一些错误出现,因此本书以开源、免费地方式发布,希望一方面能够帮助初学 者快速上手深度 线性回归 2.5 参考文献 第 3 章 分类问题 3.1 手写数字图片数据集 3.2 模型构建 3.3 误差计算 3.4 真的解决了吗 3.5 非线性模型 3.6 表达能力 3.7 优化方法 3.8 手写数字图片识别体验 3.9 小结 3.10 参考文献 第 4 章 PyTorch 基础 4.1 数据类型 4.2 数值精度 4.30 码力 | 439 页 | 29.91 MB | 1 年前3
机器学习课程-温州大学-01机器学习-引言方差…… 30 高等数学-导数 导数(Derivative),也叫导函数值。又名微商, 是微积分中的重要基础概念。当函数? = ?(?) 的自变量?在一点?0上产生一个增量??时,函 数输出值的增量??与自变量增量??的比值在 ??趋于0时的极限?如果存在,?即为在?0处的 导数,记作?′(?0)。 31 高等数学-函数的连续性 设函数 y = ? ? 在点?0的某邻域内有定义,如果当自变量的改变量0 码力 | 78 页 | 3.69 MB | 1 年前3
机器学习课程-温州大学-01深度学习-引言方差…… 31 高等数学-导数 导数(Derivative),也叫导函数值。又名微商, 是微积分中的重要基础概念。当函数? = ?(?) 的自变量?在一点?0上产生一个增量??时,函 数输出值的增量??与自变量增量??的比值在 ??趋于0时的极限?如果存在,?即为在?0处的 导数,记作?′(?0)。 32 高等数学-函数的连续性 设函数 y = ? ? 在点?0的某邻域内有定义,如果当自变量的改变量0 码力 | 80 页 | 5.38 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波数据规模越大,效果越好 • 月级数据规模相比周级数据模型,效果相差5+% • 在线和离线模型效果对比 • 在线FM相比于离线FM,相关指标提升5+% • 完全在线初始化模型参数 • 增量在线FM相比于离线FM,相关指标提升8+% • 增量在线FM:即依托于离线模型初始化在线FM模型参数 3 在线机器学习-效果 • 深度化 • 特征深度化:特征embedding • 模型深度化:深度学习模型, Wide&Deep;DeepFM0 码力 | 36 页 | 16.69 MB | 1 年前3
动手学深度学习 v2.0经过最初的快速发展,神经网络的研究从1995年左右开始停滞不前,直到2005年才稍有起色。这主要是因为 两个原因。首先,训练网络(在计算上)非常昂贵。在上个世纪末,随机存取存储器(RAM)非常强大,而计 算能力却很弱。其次,数据集相对较小。事实上,费舍尔1932年的鸢尾花卉数据集是测试算法有效性的流行 工具,而MNIST数据集的60000个手写数字的数据集被认为是巨大的。考虑到数据和计算的稀缺性,核方法 org/wiki/Alan_Turing 22 https://en.wikipedia.org/wiki/Donald_O._Hebb 1.5. 深度学习的发展 33 表1.5.1: 数据集vs计算机内存和计算能力 年代 数据规模 内存 每秒浮点运算 1970 100 (鸢尾花卉) 1 KB 100 KF (Intel 8080) 1980 1 K (波士顿房价) 100 KB 1 MF (Intel 80186) 受到统计模型固有灵活性的限制。生成式对抗性网络的关键创新是用具有可微参数的任意算法代替采 样器。然后对这些数据进行调整,使得鉴别器(实际上是一个双样本测试)不能区分假数据和真实数 据。通过使用任意算法生成数据的能力,它为各种技术打开了密度估计的大门。驰骋的斑马 (Zhu et al., 2017) 和假名人脸 (Karras et al., 2017) 的例子都证明了这一进展。即使是业余的涂鸦者也可以根据描述0 码力 | 797 页 | 29.45 MB | 1 年前3
从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱Group 1 Group N 副本1 副本2 推理节点 SDK MB级别DNN部分 Sparse Hotkey TB级别Embedding部分 全量模型,TB级,低峰期(Cos存储) 增量模型,GB级,20分钟(Cos存储) 实时模型,KB级,秒(Kafka) 分布式 Serving集群 推理节点 分布式 Serving集群 推理节点 召回索引服务 业务服务 1. 获取⽤户向量0 码力 | 22 页 | 6.76 MB | 1 年前3
谭国富:深度学习在图像审核的应用的海量人脸、图片、音乐等数据,专注在人脸、图像、 音乐、语音、机器学习等领域开展技术研究,并积极 推动研究成果在业务中落地产生价值。 关于优图实验室 人脸识别 图像识别 音频识别 SACC2017 目录 01 腾讯优图内容审核能力介绍 02 深度学习技术介绍 03 内容审核的扩展和延伸 00 图像审核的行业背景 SACC2017 内容审核 - 行业现状 不良信息泛滥,监管猝不及防 Ø 随着互联网的飞速发展和信息量的猛增, SACC2017 图像内容审核技术 OCR技术 图像分割以及超分辨率技术 优图图像技术还包括:图像分类、图像增强、艺术滤镜、图片去水印、图像融合、图像修补等。 图像识别技术 01 腾讯优图图像技术能力 SACC2017 内容审核 - 图片鉴黄解决方案 区分图像中的色情、性感和正常内容 DeepEye可给出图片属于色情、性感和正常 的概率,并结合三者概率给出综合分,通过 分数所属区间判断图片性质。 基于团队自研的深度识别引擎,核心算法与基础模型 经过多轮优化,可以准确快速地识别图片中所包含的 各类图标 l 烟雾,吸烟识别 Ø 基于视频直播监管需求, 提供吸烟,烟雾,涉嫌吸毒 等场景的识别能力 SACC2017 深度学习介绍 深度网络训练选择 加快训练 - 分布式训练系统 图像海量数据的积累 02 深度学习技术介绍 加快计算 - 深度学习算法加速 RPN SACC20170 码力 | 32 页 | 5.17 MB | 1 年前3
QCon北京2018-《深度学习在微博信息流排序的应用》-刘博离线评估与线上效果正相关? • A/B test测试 • 分目标人群测试:地域、活跃度… A B 小流量-实验组 小流量-对照组 数据对比分析 算法架构 互动行为 点击行为 阅读行为 能力标签 兴趣标签 亲密度 自然属性 账号属性 用户特征 关键词 类型属性 topic 内容标签 内容质量 内容特征 组合特征 标签匹配度 用户互动率 协同特征 实时互动率 app互动率 为什么选择深度学习 Ø 线性CTR模型 • 优势:简单高效、可解释性强 • 局限性:特征工程繁琐、无法表达高维抽象特征 Ø 深度学习模型(DNN based model) • 优势: 泛化能力强 表达能力强 网络结构灵活 User features Relation features Contextual features Continueous featues Categorical product transformation Logistic loss 深度学习应用实践 —— wide & deep Ø Wide & deep 网络架构 • Deep—泛化能力 • Wide—记忆能力 Ø 新增特征 Ø Deep部分依然需要特征工程 • Contextual featues: 用户最 近的平均阅读时长、用户最近 的互动微博 • Wide输入 • conitnues特征离散化0 码力 | 21 页 | 2.14 MB | 1 年前3
共 29 条
- 1
- 2
- 3













