积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)机器学习(11)

语言

全部中文(简体)(11)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.070 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 阿里云上深度学习建模实践-程孟力

    Conflict] 特征准入/淘汰 Adaptive Embedding 训练: 推理: Ring All-reduc同步训练 [HybridBackend/SOK] 特征选择 [VariationalDropout] 通信优化 [GRPC++] 实时训练 [增量更新] 混合精度 [bf16] 工程优化: 千亿特征优化 模型蒸馏 AVX/SSE优化 Graph优化 [User Sequence Feature [side info] Op Fusion [hash + embedding] Overlap Execution [FG OP化] Item Feature增量更新 3.工程优化复 杂 4.数据获取困 难 挑战 深度模型是非线性的: • 参数很多 • 参数敏感 • 不同场景的数据上差异大 从FM到DeepFM rt 增 加了10倍怎么优化?
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    数据规模越大,效果越好 • 月级数据规模相比周级数据模型,效果相差5+% • 在线和离线模型效果对比 • 在线FM相比于离线FM,相关指标提升5+% • 完全在线初始化模型参数 • 增量在线FM相比于离线FM,相关指标提升8+% • 增量在线FM:即依托于离线模型初始化在线FM模型参数 3 在线机器学习-效果 • 深度化 • 特征深度化:特征embedding • 模型深度化:深度学习模型, Wide&Deep;DeepFM Tensorflow 4 深度学习-深度学习模型训练 • 通信优化 • PS:BSP/SSP/ASP多种通信模式支持 • MPI&RingAllreduce:Horovod,使用 MPI替换grpc,同步通信模式;带宽优化,增加延时; • PS&MPI:DistributionStrategy API,统一分布式语义,解耦分布式架构与模型训练框架 • 使用FP16通信,使用FP32做计算,带宽压力降低一倍
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    新增:GPU并⾏操作友好->CSR格式的显存数据访问 SSD磁盘 10TB 全部参数 内存 1TB 即将⽤到的参数 显存 32/40/80GB 正在训练的参数 分布式训练的慢机与同步问题 � Feature 2.1: 短时间内只有部分item和user被命中, 只有部分参数被⽤到 � GPU训练的优势 � 更少的机器节点,更少的分布式系统相关问题 � 更⾼的性价⽐ 1 Group 1 Group N 副本1 副本2 推理节点 SDK MB级别DNN部分 Sparse Hotkey TB级别Embedding部分 全量模型,TB级,低峰期(Cos存储) 增量模型,GB级,20分钟(Cos存储) 实时模型,KB级,秒(Kafka) 分布式 Serving集群 推理节点 分布式 Serving集群 推理节点 召回索引服务 业务服务 1. 获取⽤户向量
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    页面提交: https://github.com/dragen1860/Deep-Learning-with-PyTorch-book/issues ❑ 本书主页,以及源代码,电子书下载,正式版也会在此同步更新: https://github.com/dragen1860/Deep-Learning-with-PyTorch-book ❑ 姊妹书《TensorFlow 深度学习—深入理解人工智能算法设计》: 24 现在来考虑不合理的视图变换。例如,如果定义新视图为[?, , ℎ, ?],[?, ?, ℎ ∗ ]或者 [?, ?, ℎ, ]等时,依据逻辑需要调整张量的存储顺序,如果不同步更新张量的存储顺序,那 么恢复出的数据将与新视图的逻辑不一致,从而导致数据错乱。合理性通常需要用户正确 理解数据,才能判断操作是否合理,因此具有一定主观性,但是对于大部分逻辑变换操作 而言,合理性都 “图片数量-行-列-通道”的顺序,视图维度顺序与存储维度顺序相悖,提取的数据将是错 乱的。 通过 reshape 改变视图时,必须始终记住张量的存储顺序,新视图的维度顺序不能与 存储顺序相悖,否则需要通过交换维度操作将存储顺序同步过来。举个例子,对于 shape 为[4,3,32,32]的图片数据,通过 reshape 操作将 shape 调整为[4,3,1024],此时视图的维度顺 序为? − ? − pixel,张量的存储顺序为[
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    方差…… 30 高等数学-导数 导数(Derivative),也叫导函数值。又名微商, 是微积分中的重要基础概念。当函数? = ?(?) 的自变量?在一点?0上产生一个增量??时,函 数输出值的增量??与自变量增量??的比值在 ??趋于0时的极限?如果存在,?即为在?0处的 导数,记作?′(?0)。 31 高等数学-函数的连续性 设函数 y = ? ? 在点?0的某邻域内有定义,如果当自变量的改变量
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    方差…… 31 高等数学-导数 导数(Derivative),也叫导函数值。又名微商, 是微积分中的重要基础概念。当函数? = ?(?) 的自变量?在一点?0上产生一个增量??时,函 数输出值的增量??与自变量增量??的比值在 ??趋于0时的极限?如果存在,?即为在?0处的 导数,记作?′(?0)。 32 高等数学-函数的连续性 设函数 y = ? ? 在点?0的某邻域内有定义,如果当自变量的改变量
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 超大规模深度学习在美团的应用-余建平

    Abacus、XPS, etc. • Online Learning的价值  用户的近期行为,更能表现意图和偏好  增强新item的模型感知能力 • 更快数据反馈、更少资源消耗  分钟级的数据反馈  增量训练、避免batch重训带来的资源消耗 关于Online Learning MLX的模型能力 • 支持千亿级特征、千亿级样本 • 支持计算图模式,模型结构灵活多样  支持推荐、搜索、广告场景常用的深度学习模型 模型分片存储,支持超大规模模型  数据并行计算,加速Optimizer计算 • 低频特征过滤  Counting Bloom Filter  概率方式 • 模型数据通路  Base + Delta方式  增量提供ACK机制,确保模型正确性 Parameter Server • 模型数据的统一管理  模型结构  模型参数 PS的参数放置策略 • Ps分布式分片的均衡,避免分片大小不一致 
    0 码力 | 41 页 | 5.96 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    简单网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 12.5.4 数据同步 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 12.5.5 数据分发 7.1 数据并行训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540 12.7.2 环同步(Ring Synchronization) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 12.7.3 多机训练 . . xscale='linear', yscale='linear', fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1, figsize=(3.5, 2.5)): # 增量地绘制多条线 if legend is None: legend = [] d2l.use_svg_display() self.fig, self.axes = d2l.plt.subplots(nrows
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02深度学习-神经网络的编程基础

    Gradient Descent) 梯度下降的每一步中,都用到了所有的训练样本 参数更新 ??: = ?? − ? 1 ? ෍ ?=1 ? ℎ ?(?) − ?(?) ⋅ ?? (?) (同步更新?? ,(j=0,1,...,n )) 梯度 学习率 13梯度下降的三种形式 随机梯度下降(Stochastic Gradient Descent) ? = ? − ? ⋅ ??(?) Descent) 梯度下降的每一步中,用到一个样本,在每一次计算之后便更新参数,而不 需要首先将所有的训练集求和 参数更新 ??: = ?? − ? ℎ ?(?) − ?(?) ??(?) (同步更新?? ,(j=0,1,...,n )) 15 梯度下降的三种形式 小批量梯度下降(Mini-Batch Gradient Descent) 梯度下降的每一步中,用到了一定批量的训练样本 =batch_size,通常是2的指 数倍,常见有32,64,128等。 (小批量梯度下降,MBGD) 参数更新 ??: = ?? − ? 1 ? ෍ ?=? ?+?−1 ℎ ?(?) − ?(?) ?? (?) (同步更新?? ,(j=0,1,...,n )) 16 逻辑回归的梯度下降 小批量梯度下降(Mini-Batch Gradient Descent) 梯度下降的每一步中,用到了一定批量的训练样本
    0 码力 | 27 页 | 1.54 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02机器学习-回归

    Gradient Descent) 梯度下降的每一步中,都用到了所有的训练样本 参数更新 ??: = ?? − ? 1 ? ෍ ?=1 ? ℎ ?(?) − ?(?) ⋅ ?? (?) (同步更新?? ,(j=0,1,...,n )) 梯度 学习率 15梯度下降的三种形式 随机梯度下降(Stochastic Gradient Descent) ? = ? − ? ⋅ ??(?) Descent) 梯度下降的每一步中,用到一个样本,在每一次计算之后便更新参数,而不 需要首先将所有的训练集求和 参数更新 ??: = ?? − ? ℎ ?(?) − ?(?) ??(?) (同步更新?? ,(j=0,1,...,n )) 17 梯度下降的三种形式 小批量梯度下降(Mini-Batch Gradient Descent) 梯度下降的每一步中,用到了一定批量的训练样本 =batch_size,通常是2的指 数倍,常见有32,64,128等。 (小批量梯度下降,MBGD) 参数更新 ??: = ?? − ? 1 ? ෍ ?=? ?+?−1 ℎ ?(?) − ?(?) ?? (?) (同步更新?? ,(j=0,1,...,n )) 18 梯度下降与最小二乘法比较 梯度下降:需要选择学习率?,需要多次迭代,当特征数量?大时也能较 好适用,适用于各种类型的模型。 最小二乘法:不需要选择学习率
    0 码力 | 33 页 | 1.50 MB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
阿里云上深度学习建模实践程孟力微博在线机器黄波推荐模型基础特点大规规模大规模系统设计PyTorch深度学习课程温州大学01引言超大超大规模美团应用建平动手v202神经网络神经网神经网络编程回归
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩