谭国富:深度学习在图像审核的应用深度学习在图像审核的应用 腾讯优图实验室 谭国富 http://open.youtu.qq.com SACC2017 优图团队立足于社交网络大平台,借助社交业务积累 的海量人脸、图片、音乐等数据,专注在人脸、图像、 音乐、语音、机器学习等领域开展技术研究,并积极 推动研究成果在业务中落地产生价值。 关于优图实验室 人脸识别 图像识别 音频识别 SACC2017 目录 01 腾讯优图内容审核能力介绍 腾讯优图内容审核能力介绍 02 深度学习技术介绍 03 内容审核的扩展和延伸 00 图像审核的行业背景 SACC2017 内容审核 - 行业现状 不良信息泛滥,监管猝不及防 Ø 随着互联网的飞速发展和信息量的猛增, 大量的色情图片、暴力等不良信息夹杂其 中,严重影响着互联网的健康发展。 Ø 直播行业的快速兴起,使得视频中不良信 息含量更加迅猛增长,色情暴力等不雅视 频频繁流出,导致各网络直播平台面临危 秽、血腥、暴力、极端主义、恐怖主义图像 等,方便平台进行违规处理和风险管控。 业务痛点:面对越来越爆发的安全风险,解决办法门 槛高, 成本高;迫切需要技术解决方案 SACC2017 图像内容审核技术 OCR技术 图像分割以及超分辨率技术 优图图像技术还包括:图像分类、图像增强、艺术滤镜、图片去水印、图像融合、图像修补等。 图像识别技术 01 腾讯优图图像技术能力 SACC20170 码力 | 32 页 | 5.17 MB | 1 年前3
数据增强数据增强 主讲人:龙良曲 Big Data ▪ The key to prevent Overfitting Sample more data? Limited Data ▪ Small network capacity ▪ Regularization ▪ Data argumentation Recap Data argumentation ▪ Flip ▪ Rotate0 码力 | 18 页 | 1.56 MB | 1 年前3
深度学习下的图像视频处理技术-沈小勇深度学习下的图像视频处理技术 沈小勇 优图X-Lab视觉AI负责人 专家研究员 自我介绍 自我介绍 2006.9 – 2012.7 浙江大学数学系本科硕士 2012.8 – 2016.6 香港中文大学博士 2016.6 – 2017.5 香港中文大学 Research Fellow 2017.5 – 现在 腾讯优图X-Lab 视觉AI负责人,专家研究员 个人主页:http://xiaoyongshen https://scholar.google.com/citations?user=P eMuphgAAAAJ&hl=en 看得更清,看得更懂 目录 1. 夜景增强 2. 图像视频去模糊 3. 视频超分辨率 1. 夜景图像增强 Taking photos is easy Amateur photographers typically create underexposed photos ?????????? = ???????????? − 1 ???????????? = ???????????? + 1 skip connections Decoder 3. 图像视频去模糊 图像去模糊问题 75 Data from previous work Different Blur Assumptions Uniform: [Fergus et al, 2006], [Shan0 码力 | 121 页 | 37.75 MB | 1 年前3
李东亮:云端图像技术的深度学习模型与应用云端图像技术的深度学习模型与应用 李东亮 360 人工智能研究院 lidongliang@360.cn 2017.10.20 SACC2017 360电脑安全产品 月活跃数达到4.42亿 360手机安全产品 移动端用户总数已达约1.49亿 360浏览器 月活跃用户数量为3.03亿 360导航 日均独立访问用户为8900万人 日均点击量约为4.51亿次 360搜索 稳定拥有35%以上的市场份额 智能家居 机器人 AR/VR/MR 智能手机 穿戴设备 SACC2017 万物互联的核心技术 视觉感知 语音感知 语义理解 人工智能 大数据分析 物 环境 SACC2017 图像 视频 检测 识别 分割 跟踪 物 环境 数 据 核 心 云端 移动端 业 务 视觉感知模型 SACC2017 视觉感知核心问题 Object Segmentation Object Classification Person, Horse, Barrier, Table, etc Object Detection 检测 识别 分割 跟踪 核 心 SACC2017 图像技术的三个核心难点>>小、快、准 小模型 线上速度快 预测准 Frequent remote upgrade CPU-constrained, real-time Cloud processing0 码力 | 26 页 | 3.69 MB | 1 年前3
机器学习课程-温州大学-08深度学习-深度卷积神经网络究的现状。 AlexNet 使用了8层卷积神 经网络,并以很大的优势赢得了2012 年 ImageNet 图像识别挑战赛。 LeNet (左), AlexNet (右) 7 • 在 AlexNet 的第一层,卷积窗口的形状是 11×11 。由于大 多数 ImageNet 中图像的宽和高比 MNIST 图像的多10倍以 上,因此,需要一个更大的卷积窗口来捕获目标。 第二层 中的卷积窗形状被缩减为 5×5 DenseNet的创新点在于在网 络结构中引入了密集连接,使 特征复用和梯度传播更加容易 ,在处理图像分类、目标检测 、分割等问题中都取得了不错 的结果。 21 3.其它现代网络 DenseNet 总的来说,DenseNet和ResNet都是很优秀的卷积神经网络结构,但 DenseNet通过建立密集连接,使每一层都直接接收到多个之前层的特征图输 出,增强了特征的流动和复用,从而在模型性能和训练稳定性上表现更好。 22 3.其它现代网络 EfficientNet EfficientNet是一种基于自动模型缩放的神 经网络结构,由谷歌团队于2019年提出,该 模型在图像分类、目标检测和图像分割等任 务中取得了不错的结果。 EfficientNet的设计思路来源于模型优化的 两个主要思想: 神经网络结构搜索(Neural Architecture Search,NAS)和模型融合。 其主要贡献在于开创性地提出了通过均匀缩0 码力 | 32 页 | 2.42 MB | 1 年前3
机器学习课程-温州大学-05深度学习-深度学习实践一次梯度下降,你可以找出?的较小 值,中间值和较大值,而无需尝试?2 正则化超级参数?的很多值。 14 正则化 数据增强:随意翻转和裁剪、扭曲变形图片 15 数据增强的PyTorch实现 import torch from torchvision import transforms # 定义数据增强的方法 transform = transforms.Compose([ transforms.RandomResizedCrop(224) 456, 0.406], std=[0.229, 0.224, 0.225]) # 标准化 ]) # 加载图像数据 img = Image.open('image.jpg').convert('RGB') # 对图像进行数据增强 img_aug = transform(img) # 可以将数据增强的过程添加到数据集的加载器中 dataset = datasets.ImageFolder('data' RandomHorizontalFlip是随机翻转 方法 ColorJitter是随机改变颜色方法 RandomRotation是随机旋转方法。 最后将图像转换为Tensor类型并进 行标准化。 可以将以上方法添加到数据集加载 器中进行批量的数据增强。 16 偏差和方差 训练集误差和交叉验证集误差近似时:偏差/欠拟合 交叉验证集误差远大于训练集误差时:方差/过拟合 x1 x2 x10 码力 | 19 页 | 1.09 MB | 1 年前3
Keras: 基于 Python 的深度学习库123 6.2.4 text_to_word_sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.3 图像预处理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.3.1 ImageDataGenerator . . . . . . 152 12 常用数据集 Datasets 154 12.1 CIFAR10 小图像分类数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 12.2 CIFAR100 小图像分类数据集 . . . . . . . . . . . . . . . . . . . . . . . . 1 可用的模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 13.2 图像分类模型的示例代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 13.2.1 使用 ResNet500 码力 | 257 页 | 1.19 MB | 1 年前3
复杂环境下的视觉同时定位与地图构建章国锋 浙江大学CAD&CG国家重点实验室 SLAM: 同时定位与地图构建 • 机器人和计算机视觉领域的基本问题 • 在未知环境中定位自身方位并同时构建环境三维地图 • 广泛的应用 • 增强现实、虚拟现实 • 机器人、无人驾驶 SLAM常用的传感器 • 红外传感器:较近距离感应,常用于扫地机器人。 • 激光雷达:单线、多线等。 • 摄像头:单目、双目、多目等。 • 惯性传感 SLAM应用介绍 • 无人车 MobileEye、特斯拉等自动驾驶方案 以廉价的摄像头为主 Google无人车项目Waymo 使用高精度激光雷达构建地图 SLAM应用介绍 • 虚拟/增强现实:Inside-Out方案 目前绝大多数VR头盔都采用 Outside-In的定位方案,需要在环境 中放置一个或多个传感器,活动范 围受限,不支持大范围移动的定位。 基于SLAM技术的VR 在使用者端。 优点:不需要提前布置环境中的传感器,且没有活动范围的限制。 《The Devices of VR: Part 3 – The Future of VR》 SLAM应用介绍 • 增强现实:Google Tango Google的Tango项目演示视频 Tango为终端开发者提供了从硬件到软件的整套AR开发套件 SLAM应用介绍 • 混合现实:微软HoloLens Ho0 码力 | 60 页 | 4.61 MB | 1 年前3
机器学习课程-温州大学-07深度学习-卷积神经网络04 卷积神经网络案例 本章目录 4 计算机视觉 图像获取 提取二维图像 、三维图组、 图像序列或相 关的物理数据 ,如声波、电 磁波或核磁 共振的深度、 吸收度或反射 度 预处理 对图像做一 种或一些预 处理,使图 像满足后继 处理的要 求 ,如:二次 取样保证图 像坐标的正 确,平滑、 去噪等 特征提取 从图像中提取 各种复杂度的 特征,如:线 ,边缘提取和 脊侦测,边角 特征点检测 检测/分割 对图像进行分割 ,提取有价值的 内容,用于后继 处理, 如:筛 选特征点,分割 含有特定目标的 部分 高级处理 验证得到的 数据是否匹 配前提要求 ,估测特定 系数,对 目 标进行分类 •图像分类 •目标检测 •图像分割 •目标跟踪 •OCR文字识别 •图像滤波与降噪 •图像增强 •风格迁移 •三维重建 •图像检索 •GAN 5 图像分类 6 目标检测 目标检测结合了目标分类和定位两个任务。 YOLOV5,SSD等) two-stage(OverFeat,R-CNN,Fast R-CNN,Faster R-CNN 等) 7 目标检测 8 目标检测 9 图像分割 10 目标跟踪 11 计算机视觉 图像的数字表示 一张图片数据量是64×64×3,因为每张图片都有3个颜色通道。 如果计算一下的话,可得知数据量为12288 12 01 计算机视觉概述 020 码力 | 29 页 | 3.14 MB | 1 年前3
《TensorFlow 2项目进阶实战》7-TensorFlow2进阶使用TensorFlow 2 实现图像数据增强 • 使⽤ TensorFlow 2 实现分布式训练 • 使⽤ TensorFlow Hub 迁移学习 • 使⽤ @tf.function 提升性能 • 使⽤ TensorFlow Serving 部署云端服务 • 使⽤ TensorFlow Lite 实现边缘智能 目录 使⽤ TensorFlow 2 实现图像数据增强 使⽤ TensorFlow0 码力 | 28 页 | 5.84 MB | 1 年前3
共 44 条
- 1
- 2
- 3
- 4
- 5













