积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(22)机器学习(22)

语言

全部中文(简体)(21)英语(1)

格式

全部PDF文档 PDF(22)
 
本次搜索耗时 0.071 秒,为您找到相关结果约 22 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 动手学深度学习 v2.0

    运算符 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.1.3 广播机制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.1.4 索引和切片 束搜索 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 10 注意力机制 381 10.1 注意力提示 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 中,我们引入了循环神经网络(recurrent neural network,RNN),这是一种利用数据中的时间或序列 结构的模型,通常用于自然语言处理和时间序列预测。在 10节 中,我们介绍了一类新的模型,它采用 了一种称为注意力机制的技术,最近它们已经开始在自然语言处理中取代循环神经网络。这一部分将 帮助读者快速了解大多数现代深度学习应用背后的基本工具。 • 第三部分讨论可伸缩性、效率和应用程序。首先,在 11节 中,我们讨论了用于训练深度学习模型的几
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    Autograd自动求导 01 Tensors张量 02 Autograd自动求导 03 神经网络 04 训练一个分类器 17  PyTorch 1.x的自动微分机制 构 建 计 算 图 创 建 设 置 张 量 (tensor) 设 置 t e n s o r的 requires_ g r a d 的 属 性 为 True 定 义 函 数 ( L) 置 backward()函 数 中 g r a d i e n t 参 数 , 使 其 形 状 与 函 数 L形状一样,其权重一般为1(也可 小于1) 使 用 t e n s o r.grad查 看 叶 子 节 点 的 梯 度 如 果 需 要 保 存 非 叶 子 节 点 梯 度 , 需 使 对 应 张 量 调 用 retain_graph () 使 用 t e n s o r.grad 神经网络的典型训练过程如下: • 定义神经网络模型,它有一些可学习的参数(或者权重); • 在数据集上迭代; • 通过神经网络处理输入; • 计算损失(输出结果和正确值的差距大小) • 将梯度反向传播回网络的参数; • 更新网络的参数,主要使用如下简单的更新原则: weight = weight - learning_rate * gradient 31 定义 网络 1 损失 函数 2 优化
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    工智能算法。接下来我们将介绍人工智能、机器学习、深度学习的概念以及它们之间的联 系与区别。 1.1.1 人工智能 人工智能是让机器获得像人类一样具有思考和推理机制的智能技术,这一概念最早出 现在 1956 年召开的达特茅斯会议上。这是一项极具挑战性的任务,人类目前尚无法对人脑 的工作机制有全面、科学的认知,希望能制造达到人脑水平的智能机器无疑是难于上青 天。即使如此,在某个方面呈现出类似、接近甚至超越人类智能水平的机器被证明是可行 些具体任务场景强相 关的,一旦场景发生了变动,这些依靠人工设计的特征和先验设定无法自适应新场景,因 此需要重新设计算法模型,模型的通用性不强。 设计一种像人脑一样可以自动学习、自我调整的通用智能机制一直是人类的共同愿 景。从目前来看,深度学习是最接近通用智能的算法之一。在计算机视觉领域,过去需要 针对具体的任务设计特征、添加先验假设的做法,已经被深度学习算法彻底抛弃了,目前 在图片识别、目标 是一种典型的生物神经元结构。1943 年,心理学家沃伦·麦卡洛克 (Warren McCulloch)和数理逻辑学家沃尔特·皮茨(Walter Pitts)通过对生物神经元的研究, 提出了模拟生物神经元机制的人工神经网络的数学模型 [1],这一成果被美国神经学家弗 兰克·罗森布拉特(Frank Rosenblatt)进一步发展成感知机(Perceptron)模型 [2],这也是现代 深度学习的基石。
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 目录 VIII 11 回调函数 Callbacks 146 11.1 回调函数使用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 11.1.13 LambdaCallback [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 11.2 创建一个回调函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 11.2.1 例: 记录损失历史 实现这个目标的一种方法是建立一个模型,将两条推文编码成两个向量,连接向量,然后 添加逻辑回归层;这将输出两条推文来自同一作者的概率。模型将接收一对对正负表示的推特 数据。 由于这个问题是对称的,编码第一条推文的机制应该被完全重用来编码第二条推文。这里 我们使用一个共享的 LSTM 层来编码推文。 让我们使用函数式 API 来构建它。首先我们将一条推特转换为一个尺寸为 (140, 256) 的 矩阵,即每条推特
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    定时轮询 Kafka Hdfs 样本输出 3 在线机器学习-实时样本生成 • 多流拼接 • 曝光,互动,点击,真实阅读等多种数据流接入并多流拼接 • 如何解决日志延时问题 • 延迟等待机制,先到先走 • 定时轮寻,最长N分钟等待 • Kafka 堆积监控,实时报警 • 如何解决内存问题 • 调整内存参数 • 关闭多余的监控点 • 如何异常处理 • 自动化监控与修复系统 率 • 在线版本切换:基于ZK的版本感知机制,动态进行版本切换,实现BASE模型的热更新,实时训练与离线训练周期模型融合 • 模型结构训练与推理兼容:在线PS与离线PS模型结构兼容,自动模型参数转换 • 稳定性优化 • 模型快照:基于ps-scheduler的周期模型版本探测与保存,模型稀疏化分片存储 • 冷备容灾:基于checkpoint机制(Local模式&Remote模式),实现参 模型的异构集群迁移,支持集 群扩缩容 • 性能优化 • 通信优化:数据请求(PULL&PUSH)聚合,同模型多矩阵并发,锁粒度优化,性能提升5-10倍 • 缓存优化:使用堆外内存与LRU过期机制,解决GC引起的性能损耗,性能提升3-5倍 • 分区优化:支持多种分区策略(RANGE/HASH/MOD),解决数据倾斜导致的流量热点瓶颈问题,性能提升2-5倍 • 存储优化:自定义存储方式(B
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    •图像分类 •目标检测 •图像分割 •目标跟踪 •OCR文字识别 •图像滤波与降噪 •图像增强 •风格迁移 •三维重建 •图像检索 •GAN 12 深度学习-CV典型应用案例 翻译 传统翻译采用人工查词的方式,不但耗时长 ,而且错误率高。图像识别技术(OCR)的出 现大大提升了翻译的效率和准确度,用户通 过简单的拍照、截图或划线就能得到准确的 翻译结果。 体育赛事 计算机视觉还有助于比赛和策略分 分析、理解、生 成等的操作和加工。自然语言处理的具体表现形式包括机器 翻译 、文本摘要、文本分类、文本校对、信息抽取、语音合成、语音识 别等。 可以说,自然语言处理就是要计算机理解自然语言,自然 语言处理机制涉及 两个流程,包括自然语言理解和自然语言生成 ,自然语言理解是让计算机把 输入的语言变成有意思的符号和关 系,然后根据目的再处理;自然语言生成 则是把计算机数据转 化为自然语言。实现人机间的信息交流,是人工智能
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    optimizer ’ ] ) test_loop ( test_dataloader , model2 , loss_function ) model2 的预测正确率为 70.5%,证明我们的模型保存和恢复机制是正确的。 本节代码见 chapter3.py。 3.2 初始化网络权重-方法一 我们通过自定义初始化函数,来实现对网络参数的初始化。有时候,好的初始化可以为网络 的训练带来极大好处。 在 假设我们现在已经产生了 x_data,y_data 以及 x_data2,y_data2,我们要把它们进行封装。 我们只需要继承 Dataset,然后实现三个函数即可,即初始化函数,求长度的函数以及根据索引返 回某一个样本的函数: from torch . u t i l s . data import Dataset from torch . u t i l s . data import DataLoader
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 深度学习在电子商务中的应用

    多少]; a : [我 这边 帮 您 联系 一下 快递 那边] q : [不合 适 就 退 不然 真 不 合 理]; a : [亲 ] q : [你 现在 到 unk 镇 哪里 提 就 不能 帮 我 查 下 吗]; a : [这个 是 苏宁 发货 的] q : [我的 增 票 认证 已经 成功 为什么 还 没有 给 我 寄 发票 呢]; a : [您好 请问 有 什么 可 以 帮 您 的 呢] q : unk 已经 在 现场 等 着 了 空调 没 装 好 他 不能 unk]; a : [这个 是 需要 您 自 己 承担 的] q : [谢谢 啦]; a : [不 客气 的] q : [你 哪 里 查 不到 吗]; a : [稍 等] q : [冰箱 内 的 冷藏 的 unk 小 铲子 都是 自带 的 对 吧]; a : [是 的 呢] q : [你好]; a : [您好 请问 有 什么 可 以 帮
    0 码力 | 27 页 | 1.98 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-13深度学习-Transformer

    列编码成一个上下文矩阵,在使用Decoder来解码。当然,我们仅仅把context vector作为编码器到解码器的输入。 7 1.Transformer介绍 Attention注意力机制 在介绍什么是注意力机制之前, 先让大家看一张图片。当大家看 到下面图片,会首先看到什么内 容?当过载信息映入眼帘时,我 们的大脑会把注意力放在主要的 信息上,这就是大脑的注意力机 制。 8 1 速度快:Attention 解决了 RNN及其变体模型不能并行计算的问题。Attention机 制每一步计算不依赖于上一步的计算结果,因此可以和CNN一样并行处理。 3.效果好:在Attention 机制引入之前,有一个问题大家一直很苦恼:长距离的信 息会被弱化,就好像记忆能力弱的人,记不住过去的事情是一样的。 10 2017年google的机器翻译团队在 NIPS上发表了Attention 量上更优、更易于并行化,所需训练时间明显更少 ◼ Transformer通过成功地将其应用于具有大量和有限训 练数据的分析,可以很好地推广到其他任务 ◼ Transformer,它完全基于注意力机制, 完全不用重复 和卷积,因而这些模型在质量上更优,同时更易于并 行化,并且需要的训练时间明显更少。 ◼ Transformer出现以后,迅速取代了RNN系列变种,跻 身主流模型架构基础。(RNN缺陷正在于流水线式的
    0 码力 | 60 页 | 3.51 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    Word2Vec 03 Word2Vec 04 GloVe 02 词嵌入 05 GPT 01 词汇表征和文本数据处理 15 3.Word2Vec 语言模型的训练机制就是这样 1.我们获得了大量文本数据(例如,所 有维基百科文章)。然后 2.我们有一个窗口(比如说三个单词) ,我们会对所有文本进行滑动。 3.滑动窗口为我们的模型生成训练样本 16 3 中,考虑到主导序列转导模型基于编码器-解码器配置中的复杂递归或卷积 神经网络,性能最好的模型被证明还是通过注意力机制(attention mechanism)连接编码器和解码器,因而《Attention Is All You Need》 中提出了一种新的简单架构——Transformer,它完全基于注意力机制, 完全不用重复和卷积,因而这些模型在质量上更优,同时更易于并行化,并 且需要的训练时间明显更少。 生成对抗方式,即通过GAN实现目标属性和 文本量性完全由不同的编码控制的状态。 对话式文本生成适用于智能客服等任务型和闲聊型机器人等 非任务型人机交互场景,可分类为管道模式及端对端模式。 结构性的文本生成,首先通过注意力机制、多层感知器等系 统进行语句内容预选,对数值、时间等类型数据进行推理。 增强数据间的结构信息。其次通过Transformer等模式结合 上下文进行推导,生成最终文本。 ◼ Transform
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
共 22 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
动手深度学习v2机器课程温州大学03PyTorch入门深度学习Keras基于Python微博在线实践黄波01引言连接神经网络神经网神经网络实战pytorch电子商务电子商务应用13Transformer12自然语言自然语言处理嵌入
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩