积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(43)机器学习(43)

语言

全部中文(简体)(42)英语(1)

格式

全部PDF文档 PDF(43)
 
本次搜索耗时 0.042 秒,为您找到相关结果约 43 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-12机器学习-关联规则

    关联规则可以看作是一种IF-THEN关系。假设 商品A被客户购买,那么在相同的交易ID下, 商品B也被客户挑选的机会就被发现了。 5 1.关联规则概述 有没有发生过这样的事:你出去买东西, 结果却买了比你计划的多得多的东西?这 是一种被称为冲动购买的现象,大型零售 商利用机器学习和Apriori算法,让我们倾 向于购买更多的商品。 6 1.关联规则概述 购物车分析是大型超市用来揭示商品之间关联的关 顾客,向他们提供报价,以便他们购买第三种商品,比如鸡蛋。 因此,如果顾客买了面包和黄油,看到鸡蛋有折扣或优惠,他们就会倾向于 多花些钱买鸡蛋。这就是购物车分析的意义所在。 7 1.关联规则概述 置信度: 表示你购买了A商品后,你还会有 多大的概率购买B商品。 支持度: 指某个商品组合出现的次数与总次 数之间的比例,支持度越高表示该组合出现 的几率越大。 提升度: 提升度代表商品A的出现,对商品 B的出现概率提升了多少,即“商品 如果某个项集是频繁的,那么它的所有子集也是频繁的。 11 2.Apriori算法 算法流程 输入:数据集合D,支持度阈值? 输出:最大的频繁k项集 1)扫描整个数据集,得到所有出现过的数据,作为候选频繁1项集。k=1,频繁0项集为空集。 2)挖掘频繁k项集 a) 扫描数据计算候选频繁k项集的支持度 b) 去除候选频繁k项集中支持度低于阈值的数据集,得到频繁k项集。如果得到的频繁k项集 为空,则直接返回
    0 码力 | 49 页 | 1.41 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    不过 可能没有一些公司试图让大家相信的那么自主),可以自动起草普通邮件的智能回复系统,帮助人们从令人 压抑的大收件箱中解放出来。在围棋等棋类游戏中,软件超越了世界上最优秀的人,这曾被认为是几十年后 的事。这些工具已经对工业和社会产生了越来越广泛的影响,改变了电影的制作方式、疾病的诊断方式,并 在基础科学中扮演着越来越重要的角色——从天体物理学到生物学。 关于本书 这本书代表了我们的尝试 学习框架,在研究界非常受欢迎。本书 中的所有代码都在最新版本的PyTorch下通过了测试。但是,由于深度学习的快速发展,一些在印刷版中代 码可能在PyTorch的未来版本无法正常工作。但是,我们计划使在线版本保持最新。如果读者遇到任何此类 问题,请查看安装 (page 9) 以更新代码和运行时环境。 下面是我们如何从PyTorch导入模块。 #@save import numpy as 使用的函数和类: pip install d2l==0.17.6 下载 D2L Notebook 接下来,需要下载这本书的代码。可以点击本书HTML页面顶部的“Jupyter 记事本”选项下载后解压代码, 或者可以按照如下方式进行下载: mkdir d2l-zh && cd d2l-zh curl https://zh-v2.d2l.ai/d2l-zh-2.0.0.zip -o d2l-zh
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-10机器学习-聚类

    首先,初始化称为簇质心的任意点。初始化 时,必须注意簇的质心必须小于训练数据点 的数目。因为该算法是一种迭代算法,接下 来的两个步骤是迭代执行的。 18 2.K-means聚类 K-means算法流程 初始化后,遍历所有数据点,计算所有质心 与数据点之间的距离。现在,这些簇将根据 与质心的最小距离而形成。在本例中,数据 分为3个簇(? = 3)。 簇赋值 19 2.K-means聚类 K-means算法流程 可在噪声的空间数据库中发现任意形状的聚类。 密度:空间中任意一点的密度是以该点为圆心,以扫描半径构成的圆区域内包 含的点数目。 30 密度聚类-DBSCAN DBSCAN使用两个超参数: 扫描半径 (eps)和最小包含点数(minPts)来获得簇的数量,而不是猜测簇的数目。 ➢ 扫描半径 (eps) : 用于定位点/检查任何点附近密度的距离度量,即扫描半径。 ➢ 最小包含点数(minPts) : 聚集在一起 3845 (a) (c) (b) (d) 这个案例中,当: eps=0.3,minPts=10的时候, DBSCAN达到最优效果。 37 港口发现算法 单拖船的作业规律比较 清晰,出港后,全速驶 向作业区域,在作业区 域拖网作业,一个航次 结束,全速驶向渔港, 我 们 设 计 了 一 种 基 于 DBSCAN和K-means的 混合FindPort算法 典型的单拖船一年的轨迹图
    0 码力 | 48 页 | 2.59 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》5-实战TensorFlow手写体数字识别

    第五部分 实战 TensorFlow 手写体数字识别 扫描二维码 试看/购买《TensorFlow 快速入门与实战》视频课程 • 手写体数字 MNIST 数据集介绍 • MNIST Softmax 网络介绍 • 实战 MNIST Softmax 网络 • MNIST CNN 网络介绍 • 实战 MNIST CNN 网络 第五部分 目录 手写体数字 MNIST 数据集介绍 MNIST 图像处理算法中常用的空间滤波是类似的。因此,卷积常常被通俗地理解为一种“滤波”过程, 卷积核与输入数据作用之后得到了“滤波”后的图像,从而提取出了图像的特征。 池化层(Pooling) 池化层是用于缩小数据规模的一种非线性计算层。为了降低特征维度,我们需要对输入数据进 行采样,具体做法是在一个或者多个卷积层后增加一个池化层。池化层由三个参数决定:(1) 池化类型,一般有最大池化和平均池化两种;(2)池化核的大小k​;(3)池化核的滑动间隔​s。 暂时随机丢弃,即在当前迭代中不参与训练。 Flatten 将卷积和池化后提取的特征摊平后输入全连接网络,这里与 MNIST softmax 网络的输入层类似。 MNIST CNN 输入特征,MNIST Softmax 输入原图。 MNIST CNN 示意图 实战 MNIST CNN 网络 “Hello TensorFlow” Try it 扫描二维码 试看/购买《TensorFlow 快速入门与实战》视频课程
    0 码力 | 38 页 | 1.82 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别

    第六部分 实战 TensorFlow 验证码识别 扫描二维码 试看/购买《TensorFlow 快速入门与实战》视频课程 • 准备模型开发环境 • 生成验证码数据集 • 输入与输出数据处理 • 模型结构设计 • 模型损失函数设计 • 模型训练过程分析 • 模型部署与效果演示 第六部分 目录 准备模型开发环境 第三方依赖包 数据集生成 • Pillow • captcha flask Pillow (PIL Fork) PIL(Python Imaging Library) 为 Python 解释器添加了图像处理功能。但是,在 2009 年发布 1.1.7 版本后,社区便停止更新和维护。 Pillow 是由 Alex Clark 及社区贡献者 一起开发和维护的一款分叉自 PIL 的图像工具库。 至今,社区依然非常活跃,Pillow 仍在快速迭代。 Pil rate) 学习率与损失值变化(模型收敛速度)直接相关。 何时加大学习率 • 训练初期,损失值一直没什么波动 何时减小学习率 • 训练初期,损失值直接爆炸或者 NAN • 损失值先开始速降,后平稳多时 • 训练后期,损失值反复上下波动 优化器介绍:SGD(Stochastic Gradient Descent) 优化器介绍:SGD-M(Momentum) SGD SGD with Momentum
    0 码力 | 51 页 | 2.73 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-07机器学习-决策树

    (root node) 非叶子节点 (non-leaf node) (代表测试条件,对数据属性的测试) 分支 (branches) (代表测试结果) 叶节点 (leaf node) (代表分类后所获得的分类标记) ⚫ 决策树算法是一种归纳分类算法 ,它通过对训练集的学习,挖掘 出有用的规则,用于对新数据进 行预测。 ⚫ 决策树算法属于监督学习方法。 ⚫ 决策树归纳的基本算法是贪心算法 为了尽可能正确分类训练样本,节点的划分过程会不断重复直到不能再分,这 样就可能对训练样本学习的“太好”了,把训练样本的一些特点当做所有数据 都具有的一般性质,从而导致过拟合。 剪枝的基本策略有“预剪枝”(prepruning)和“后剪枝”(post-pruning) 通过剪枝处理去掉一些分支来降低过拟合的风险。 20 C4.5的剪枝 预剪枝(prepruning) 预剪枝不仅可以降低过拟合的风险而且还可以 减少训练时间,但另一方面它是基于“贪心” • 节点划分前准确率比划分后准确率高。 22 C4.5的剪枝 预剪枝 平坦 坏瓜 脐部 凹陷 稍凹 ① ④ ③ ② 好瓜 好瓜 验证集精度 脐部=? 划分前:42.9% 划分后:71.4% 预剪枝决策:划分 验证集精度 根蒂=? 划分前:71.4% 划分后:71.4% 预剪枝决策:禁止划分 验证集精度 色泽=? 划分前:71.4% 划分后:57.1% 预剪枝决策:禁止划分
    0 码力 | 39 页 | 1.84 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测

    第四部分 实战 TensorFlow 房价预测 扫描二维码 试看/购买《TensorFlow 快速入门与实战》视频课程 • 房价预测模型介绍 • 使用 TensorFlow 实现房价预测模型 • 使用 TensorBoard 可视化模型数据流图 • 实战 TensorFlow 房价预测 第四部分 目录 房价预测模型介绍 前置知识:监督学习(Supervised Learning) 可视化数据分布 TensorBoard 可视化数据集(MNIST) TensorBoard 可视化数据流图 TensorBoard 使用流程 可视化的数据是数据流图和张量,它们需要在会话中加载或执行操作后才能获取。然后, 用户需要使用 FileWriter 实例将这些数据写入事件文件。最后,启动 TensorBoard 程序, 加载事件文件中的序列化数据,从而可以在各个面板中展示对应的可视化对象。 TensorFlow 房价预测 实战 TensorFlow 房价预测 工作流 数据处理 设计模型 (数据流图) 可视化 数据流图 训练模型 “Hello TensorFlow” Try it 扫描二维码 试看/购买《TensorFlow 快速入门与实战》视频课程
    0 码力 | 46 页 | 5.71 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    当我们明白何为“神经网络”,何为“反向传播”时,我们就已经具备了开始搭建和训练网络 的能力。此时,最好的方法就是给我们一个由简及难的程序示例,我们能够快速搭建出一个网络, 我们可以开始训练,以及指导如何计算训练后的结果准确率等信息。 这也是我要开始写这么一本小书的初衷,我会把本小书控制在 3 小时的学习时间之内。也就 是说,只知道一丁点 python 知识和神经网络的概念,而从未使用过 pytorch 的读者,只需要三个 随后我们再把数据导入到 DataLoader 里面: # batch_size : 每 次 迭 代 取 出 的 数 据 量 # s h u f f l e : 洗 牌 的 意 思, 先 把 数 据 打 乱, 然 后 再 分 为 不 同 的 batch Chapter 1. 准备章节 9 train_dataloader = DataLoader ( training_data , batch_size =64 ) # 取 出 索 引 为 23 的 数 据 img = train_features [ 2 3 ] . squeeze () # 把 train_labels 先 转 为numpy, 然 后 再 取 索 引 23 的 标 签 l a b e l = train_labels . numpy() [ 2 3 ] plt . t i t l e ( labels_map [ l a b e
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    """ You are a helpful assistant. """ 然后通过运行下列命令来创建一个 ollama 模型 ollama create qwen7b -f Modelfile 完成后,你即可运行你的 ollama 模型: ollama run qwen7b 1.6 Text Generation Web UI Text Generation Web UI(简称 TGW,通常 档中,我们将向您展示如何使用 transformers 库加载并应用量化后的模型,同时也会指导您如何通过 AutoGPTQ 来对您自己的模型进行量化处理。 1.8.1 在 Transformers 中使用 GPTQ 模型 现在,Transformers 正式支持了 AutoGPTQ,这意味着您能够直接在 Transformers 中使用量化后的模型。以下 是一个非常简单的代码片段示例,展示如何运行 Qwen1 https://github.com/AutoGPTQ/AutoGPTQ cd AutoGPTQ pip install -e . 假设你已经基于 Qwen1.5-7B 模型进行了微调,并将该微调后的模型命名为 Qwen1.5-7B-finetuned , 且使用的是自己的数据集,比如 Alpaca。要构建你自己的 GPTQ 量化模型,你需要使用训练数据进行校准。 以下是一个简单的演示示例,供你参考运行:
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    PATH”之后再点击【Install Now】默认安装完成即可。 3. 安装好 Python 语言包支持以后可以通过命令行来验证测试 安装是否成功,首先通过 cmd 打开 Window 命令行窗口,然 后输入 Python,显示如下: 图 1-2(验证 Python 命令行模式) 如果显示图 1-2 所示的信息表示已经安装成功 Python 语言包 支持;如果输入 Python 之后显示信息为“'python' Pytroch 框架开发的大门。 本章的目标是帮助初学者厘清深度学习框架基本概念、基础 组件与基础数据操作、同时通过案例激发起大家进一步学习 的兴趣。 如欲了解更多 OpenVINO™ 开发资料, 请扫描下方二维码,我们会把最新资料及时推送给您。
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
共 43 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
机器学习课程温州大学12关联规则动手深度v210聚类TensorFlow快速入门实战手写手写体数字识别验证验证码07决策决策树房价预测连接神经网络神经网神经网络pytorchAI模型千问qwen中文文档PyTorchOpenVINO开发系列教程第一一篇第一篇
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩