 【PyTorch深度学习-龙龙老师】-测试版202112链式法则 7.7 反向传播算法 7.8 Himmelblau 函数优化实战 7.9 反向传播算法实战 7.10 参考文献 第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 8.8 参考文献 第 9 章 过拟合 年发布的深度学习框架,最初版本只支持符号式编程。 得益于发布时间较早,以及 Google 在深度学习领域的影响力,TensorFlow 很快成为最 流行的深度学习框架。但是由于 TensorFlow 接口设计频繁变动,功能设计重复冗余, 符号式编程开发和调试非常困难等问题,TensorFlow 1.x 版本一度被业界诟病。2019 年,Google 推出 TensorFlow 2 正式版本,将以动态图优先模式运行,从而能够避免 1.5.3 功能演示 深度学习的核心是算法的设计思想,深度学习框架只是我们实现算法的工具。对工具 的理解有助于加深对算法的掌握程度。下面将演示 PyTorch 深度学习框架的三大核心功 能,从而帮助我们理解框架在算法设计中扮演的角色。 1) 加速计算 神经网络本质上由大量的矩阵相乘、矩阵相加等基本数学运算构成,TensorFlow 的重 要功能就是利用 GPU 方便地实现并行计算加速功能。为了演示0 码力 | 439 页 | 29.91 MB | 1 年前3 【PyTorch深度学习-龙龙老师】-测试版202112链式法则 7.7 反向传播算法 7.8 Himmelblau 函数优化实战 7.9 反向传播算法实战 7.10 参考文献 第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 8.8 参考文献 第 9 章 过拟合 年发布的深度学习框架,最初版本只支持符号式编程。 得益于发布时间较早,以及 Google 在深度学习领域的影响力,TensorFlow 很快成为最 流行的深度学习框架。但是由于 TensorFlow 接口设计频繁变动,功能设计重复冗余, 符号式编程开发和调试非常困难等问题,TensorFlow 1.x 版本一度被业界诟病。2019 年,Google 推出 TensorFlow 2 正式版本,将以动态图优先模式运行,从而能够避免 1.5.3 功能演示 深度学习的核心是算法的设计思想,深度学习框架只是我们实现算法的工具。对工具 的理解有助于加深对算法的掌握程度。下面将演示 PyTorch 深度学习框架的三大核心功 能,从而帮助我们理解框架在算法设计中扮演的角色。 1) 加速计算 神经网络本质上由大量的矩阵相乘、矩阵相加等基本数学运算构成,TensorFlow 的重 要功能就是利用 GPU 方便地实现并行计算加速功能。为了演示0 码力 | 439 页 | 29.91 MB | 1 年前3
 PyTorch OpenVINO 开发实战系列教程第一篇����������������������������������������������������������������������������� 2 1.1.2 Pytorch 的模块与功能 �������������������������������������������������������������������������������������������������� 开发者生态社区,因为其开发效率高、特别容 易构建各种复杂的深度学习模型网络,因此很快得到大量人工 智能开发者的认可与追捧,也成为工业界最受欢迎的深度学习 框架之一。 Pytorch 发展至今,其版本跟功能几经迭代,针对不同的场景 任务分裂出不同的分支扩展库,比如针对自然语言处理(NLP) 的 torchtext、针对计算机视觉的 torchvision、针对语音处理 的 torchaudio,这些库支持快速模型训练与演示应用,可以 API/SDK 函数改动,性能有进一步需要提升的空间; 原型版本是新功能还不可以,需要开发不能通过 pip 方式直接 安装。 1.1.2 Pytorch 的模块与功能 Pytorch 当前支持绝大数的深度学习常见的算子操作,基于相 关的功能模块可以快速整合数据、构建与设计模型、实现模型 训练、导出与部署等操作。这些功能的相关模块主要有如下: 1)torch.nn 包,里面主要包含构建卷积神经网络的各种算子0 码力 | 13 页 | 5.99 MB | 1 年前3 PyTorch OpenVINO 开发实战系列教程第一篇����������������������������������������������������������������������������� 2 1.1.2 Pytorch 的模块与功能 �������������������������������������������������������������������������������������������������� 开发者生态社区,因为其开发效率高、特别容 易构建各种复杂的深度学习模型网络,因此很快得到大量人工 智能开发者的认可与追捧,也成为工业界最受欢迎的深度学习 框架之一。 Pytorch 发展至今,其版本跟功能几经迭代,针对不同的场景 任务分裂出不同的分支扩展库,比如针对自然语言处理(NLP) 的 torchtext、针对计算机视觉的 torchvision、针对语音处理 的 torchaudio,这些库支持快速模型训练与演示应用,可以 API/SDK 函数改动,性能有进一步需要提升的空间; 原型版本是新功能还不可以,需要开发不能通过 pip 方式直接 安装。 1.1.2 Pytorch 的模块与功能 Pytorch 当前支持绝大数的深度学习常见的算子操作,基于相 关的功能模块可以快速整合数据、构建与设计模型、实现模型 训练、导出与部署等操作。这些功能的相关模块主要有如下: 1)torch.nn 包,里面主要包含构建卷积神经网络的各种算子0 码力 | 13 页 | 5.99 MB | 1 年前3
 Keras: 基于 Python 的深度学习库漏洞报告 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 21.3 请求新功能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 21.4 请求贡献代码 你可以提出问题并参与开发讨论: • Keras Google group。 • Keras Slack channel。使用 这个链接 向该频道请求邀请函。 你也可以在 Github issues 中张贴漏洞报告和新功能请求(仅限于此)。注意请先阅读规范 文档。 KERAS: 基于 PYTHON 的深度学习库 4 1.7 为什么取名为 Keras? Keras (κέρας) 在希腊语中意为 号角。它来自古希腊和拉丁文学中的一个文学形象,首先出 TensorFlow 之外,且 Keras API 是 TensorFlow 的官方前端, 为什么选择 KERAS? 6 通过 tf.keras 模块使用)。 您已经不断与使用 Keras 构建的功能进行交互 - 它在 Netflix, Uber, Yelp, Instacart, Zocdoc, Square 等众多网站上使用。它尤其受以深度学习作为产品核心的创业公司的欢迎。 Keras0 码力 | 257 页 | 1.19 MB | 1 年前3 Keras: 基于 Python 的深度学习库漏洞报告 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 21.3 请求新功能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 21.4 请求贡献代码 你可以提出问题并参与开发讨论: • Keras Google group。 • Keras Slack channel。使用 这个链接 向该频道请求邀请函。 你也可以在 Github issues 中张贴漏洞报告和新功能请求(仅限于此)。注意请先阅读规范 文档。 KERAS: 基于 PYTHON 的深度学习库 4 1.7 为什么取名为 Keras? Keras (κέρας) 在希腊语中意为 号角。它来自古希腊和拉丁文学中的一个文学形象,首先出 TensorFlow 之外,且 Keras API 是 TensorFlow 的官方前端, 为什么选择 KERAS? 6 通过 tf.keras 模块使用)。 您已经不断与使用 Keras 构建的功能进行交互 - 它在 Netflix, Uber, Yelp, Instacart, Zocdoc, Square 等众多网站上使用。它尤其受以深度学习作为产品核心的创业公司的欢迎。 Keras0 码力 | 257 页 | 1.19 MB | 1 年前3
 动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 8.2.4 整合所有功能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 8.3 语言模型和数据集 . . 满足他们的需求。以动态网页应用为例。尽管许多公司,如亚马逊,在20世纪90年代开发了成功的数据库驱 动网页应用程序。但在过去的10年里,这项技术在帮助创造性企业家方面的潜力已经得到了更大程度的发挥, 部分原因是开发了功能强大、文档完整的框架。 测试深度学习的潜力带来了独特的挑战,因为任何一个应用都会将不同的学科结合在一起。应用深度学习需 要同时了解(1)以特定方式提出问题的动机;(2)给定建模方法的数学; (3)将模型拟合数据的优化算法; 者们一起驱车去咖啡店。阿斯顿拿起一部iPhone, 对它说道:“Hey Siri!”手机的语音识别系统就被唤醒了。接着,李沐对Siri说道:“去星巴克咖啡店。”语音 识别系统就自动触发语音转文字功能,并启动地图应用程序,地图应用程序在启动后筛选了若干条路线,每 条路线都显示了预计的通行时间⋯⋯由此可见,机器学习渗透在生活中的方方面面,在短短几秒钟的时间里, 人们与智能手机的日常互动就可以涉及几种机器学习模型。0 码力 | 797 页 | 29.45 MB | 1 年前3 动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 8.2.4 整合所有功能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 8.3 语言模型和数据集 . . 满足他们的需求。以动态网页应用为例。尽管许多公司,如亚马逊,在20世纪90年代开发了成功的数据库驱 动网页应用程序。但在过去的10年里,这项技术在帮助创造性企业家方面的潜力已经得到了更大程度的发挥, 部分原因是开发了功能强大、文档完整的框架。 测试深度学习的潜力带来了独特的挑战,因为任何一个应用都会将不同的学科结合在一起。应用深度学习需 要同时了解(1)以特定方式提出问题的动机;(2)给定建模方法的数学; (3)将模型拟合数据的优化算法; 者们一起驱车去咖啡店。阿斯顿拿起一部iPhone, 对它说道:“Hey Siri!”手机的语音识别系统就被唤醒了。接着,李沐对Siri说道:“去星巴克咖啡店。”语音 识别系统就自动触发语音转文字功能,并启动地图应用程序,地图应用程序在启动后筛选了若干条路线,每 条路线都显示了预计的通行时间⋯⋯由此可见,机器学习渗透在生活中的方方面面,在短短几秒钟的时间里, 人们与智能手机的日常互动就可以涉及几种机器学习模型。0 码力 | 797 页 | 29.45 MB | 1 年前3
 机器学习课程-温州大学-numpy使用总结NumPy数组(ndarry)对象 03 ufunc函数 04 NumPy的函数库 4 NumPy(Numeric Python)是Python的一种开源的数值计算扩展库。 它包含很多功能: · 创建n维数组(矩阵) · 对数组进行函数运算 · 数值积分 · 线性代数运算 · 傅里叶变换 · 随机数产生 ······ NumPy是什么? 5 NumPy提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处 NumPy在均值等方面常用的函数如下: > np.random.seed(42) > a = np.random.randint(0,10,size=(4,5)) > np.sum(a) 96 函数名 功能 sum 求和 average 加权平均数 var 方差 mean 期望 std 标准差 product 连乘积 37 求和,平均值,方差 a -------------- 矩阵广播计算后的 [4, 4, 5, 7], 结果 [6, 6, 6, 7]]) 函数名 功能 函数名 功能 min 最小值 max 最大值 ptp 极差 argmin 最小值的下标 mininum 二元最小值 maxinum 二元最大值 sort 数组排序 argsort 数组排序下标 percentile0 码力 | 49 页 | 1.52 MB | 1 年前3 机器学习课程-温州大学-numpy使用总结NumPy数组(ndarry)对象 03 ufunc函数 04 NumPy的函数库 4 NumPy(Numeric Python)是Python的一种开源的数值计算扩展库。 它包含很多功能: · 创建n维数组(矩阵) · 对数组进行函数运算 · 数值积分 · 线性代数运算 · 傅里叶变换 · 随机数产生 ······ NumPy是什么? 5 NumPy提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处 NumPy在均值等方面常用的函数如下: > np.random.seed(42) > a = np.random.randint(0,10,size=(4,5)) > np.sum(a) 96 函数名 功能 sum 求和 average 加权平均数 var 方差 mean 期望 std 标准差 product 连乘积 37 求和,平均值,方差 a -------------- 矩阵广播计算后的 [4, 4, 5, 7], 结果 [6, 6, 6, 7]]) 函数名 功能 函数名 功能 min 最小值 max 最大值 ptp 极差 argmin 最小值的下标 mininum 二元最小值 maxinum 二元最大值 sort 数组排序 argsort 数组排序下标 percentile0 码力 | 49 页 | 1.52 MB | 1 年前3
 机器学习课程-温州大学-01机器学习-引言http://localhost:8088/tree 53 ⚫Pycharm https://www.jetbrains.com/pycharm/ Pycharm 提供 免费的社区版 与 付费的专业版。专业版额外增加了一些功能, 如项目模板、远程开发、数据库支持等。个人学习 Python 使用免费的社区版 已足够。 如果有edu邮箱,那么推荐使用专业版,edu邮箱是可以免费使用专业版的。 安装过程照着提示一步步操作就可以了。 ⚫元组(tuple) 元组类似列表,元组里面的元素也是进行索引计算。列表里面的元素的值可以修改,而元组 里面的元素的值不能修改,只能读取。元组的符号是( ) ⚫集合(set) 集合主要有两个功能,一个功能是进行集合操作,另一个功能是消除重复元素。 集合的格式 是:set( ),其中()内可以是列表、字典或字符串,因为字符串是以列表的形式存储的 ⚫字典(dict) 字典dict也叫做关联数组,用大括号{ }0 码力 | 78 页 | 3.69 MB | 1 年前3 机器学习课程-温州大学-01机器学习-引言http://localhost:8088/tree 53 ⚫Pycharm https://www.jetbrains.com/pycharm/ Pycharm 提供 免费的社区版 与 付费的专业版。专业版额外增加了一些功能, 如项目模板、远程开发、数据库支持等。个人学习 Python 使用免费的社区版 已足够。 如果有edu邮箱,那么推荐使用专业版,edu邮箱是可以免费使用专业版的。 安装过程照着提示一步步操作就可以了。 ⚫元组(tuple) 元组类似列表,元组里面的元素也是进行索引计算。列表里面的元素的值可以修改,而元组 里面的元素的值不能修改,只能读取。元组的符号是( ) ⚫集合(set) 集合主要有两个功能,一个功能是进行集合操作,另一个功能是消除重复元素。 集合的格式 是:set( ),其中()内可以是列表、字典或字符串,因为字符串是以列表的形式存储的 ⚫字典(dict) 字典dict也叫做关联数组,用大括号{ }0 码力 | 78 页 | 3.69 MB | 1 年前3
 机器学习课程-温州大学-01深度学习-引言http://localhost:8088/tree 54 ⚫Pycharm https://www.jetbrains.com/pycharm/ Pycharm 提供 免费的社区版 与 付费的专业版。专业版额外增加了一些功能, 如项目模板、远程开发、数据库支持等。个人学习 Python 使用免费的社区版 已足够。 如果有edu邮箱,那么推荐使用专业版,edu邮箱是可以免费使用专业版的。 安装过程照着提示一步步操作就可以了。 ⚫元组(tuple) 元组类似列表,元组里面的元素也是进行索引计算。列表里面的元素的值可以修改,而元组 里面的元素的值不能修改,只能读取。元组的符号是( ) ⚫集合(set) 集合主要有两个功能,一个功能是进行集合操作,另一个功能是消除重复元素。 集合的格式 是:set( ),其中()内可以是列表、字典或字符串,因为字符串是以列表的形式存储的 ⚫字典(dict) 字典dict也叫做关联数组,用大括号{ }0 码力 | 80 页 | 5.38 MB | 1 年前3 机器学习课程-温州大学-01深度学习-引言http://localhost:8088/tree 54 ⚫Pycharm https://www.jetbrains.com/pycharm/ Pycharm 提供 免费的社区版 与 付费的专业版。专业版额外增加了一些功能, 如项目模板、远程开发、数据库支持等。个人学习 Python 使用免费的社区版 已足够。 如果有edu邮箱,那么推荐使用专业版,edu邮箱是可以免费使用专业版的。 安装过程照着提示一步步操作就可以了。 ⚫元组(tuple) 元组类似列表,元组里面的元素也是进行索引计算。列表里面的元素的值可以修改,而元组 里面的元素的值不能修改,只能读取。元组的符号是( ) ⚫集合(set) 集合主要有两个功能,一个功能是进行集合操作,另一个功能是消除重复元素。 集合的格式 是:set( ),其中()内可以是列表、字典或字符串,因为字符串是以列表的形式存储的 ⚫字典(dict) 字典dict也叫做关联数组,用大括号{ }0 码力 | 80 页 | 5.38 MB | 1 年前3
 AI大模型千问 qwen 中文文档模型的各种用途。若想了解更多,请随时查阅本文档中的其他内容。 1.3 使用 Transformers 实现 Chat Qwen1.5 最重要同时也最简单的用途是通过 transformers 库实现 Chat 功能。在本文档中,我们将展示如何在 流式模式或非流式模式下与 Qwen1.5-7B-Chat 进行对话。 1.3.1 基本用法 你只需借助 transformers 库编写几行代码,就能与 Qwen1 Qwen 成为可能。该库是 一个纯 C/C++ 实现,不依赖任何外部库,并且针对 x86 架构提供了 AVX、AVX2 和 AVX512 加速支持。此 外,它还提供了 2、3、4、5、6 以及 8 位量化功能,以加快推理速度并减少内存占用。对于大于总 VRAM 容量的大规模模型,该库还支持 CPU+GPU 混合推理模式进行部分加速。本质上,llama.cpp 的用途在于运行 GGUF(由 GPT 生成的 TGW 中包含了许多更多用途,您甚至可以在其中享受角色扮演的乐趣,并使用不同类型的量化模型。您可 以训练诸如 LoRA 这样的算法,并将 Stable Diffusion 和 Whisper 等扩展功能纳入其中。赶快去探索更多高级 用法,并将它们应用于 Qwen 模型中吧! 1.7 AWQ 对于量化模型,我们推荐使用 AWQ 结合 AutoAWQ 。AWQ 即激活感知权重量化,是一种针对 LLM0 码力 | 56 页 | 835.78 KB | 1 年前3 AI大模型千问 qwen 中文文档模型的各种用途。若想了解更多,请随时查阅本文档中的其他内容。 1.3 使用 Transformers 实现 Chat Qwen1.5 最重要同时也最简单的用途是通过 transformers 库实现 Chat 功能。在本文档中,我们将展示如何在 流式模式或非流式模式下与 Qwen1.5-7B-Chat 进行对话。 1.3.1 基本用法 你只需借助 transformers 库编写几行代码,就能与 Qwen1 Qwen 成为可能。该库是 一个纯 C/C++ 实现,不依赖任何外部库,并且针对 x86 架构提供了 AVX、AVX2 和 AVX512 加速支持。此 外,它还提供了 2、3、4、5、6 以及 8 位量化功能,以加快推理速度并减少内存占用。对于大于总 VRAM 容量的大规模模型,该库还支持 CPU+GPU 混合推理模式进行部分加速。本质上,llama.cpp 的用途在于运行 GGUF(由 GPT 生成的 TGW 中包含了许多更多用途,您甚至可以在其中享受角色扮演的乐趣,并使用不同类型的量化模型。您可 以训练诸如 LoRA 这样的算法,并将 Stable Diffusion 和 Whisper 等扩展功能纳入其中。赶快去探索更多高级 用法,并将它们应用于 Qwen 模型中吧! 1.7 AWQ 对于量化模型,我们推荐使用 AWQ 结合 AutoAWQ 。AWQ 即激活感知权重量化,是一种针对 LLM0 码力 | 56 页 | 835.78 KB | 1 年前3
 机器学习课程-温州大学-05深度学习-深度学习实践正则化给出的最优解w*是使解更加靠近某些轴,而其它的轴则为0,所以??正则化能使得到的参数稀疏化。 ??正则化是 指在损失函 数中加入权 值向量w的绝 对值之和, ??的功能是 使权重稀疏 在损失函数 中加入权值 向量w的平 方和,??的 功能是使权 重平滑。 ?(?) = 1 ? σ?=1 ? ? ̰? ? , ? ? + ? 2? σ?=1 ? | ??| ??正则化可以防止过拟合 ? σ?=1 ? ? ̰? (?) , ?(?) + ? 2? σ?=1 ? ?? 2 12 正则化 x[2] x[3] x[1] a[L] DropOut Dropout的功能类似于?2正则化,与?2正则化不同的是,被应用的方 式不同,dropout也会有所不同,甚至更适用于不同的输入范围 keep-prob=1(没有dropout) keep-prob=0.5(常用取值,保留一半神经元)0 码力 | 19 页 | 1.09 MB | 1 年前3 机器学习课程-温州大学-05深度学习-深度学习实践正则化给出的最优解w*是使解更加靠近某些轴,而其它的轴则为0,所以??正则化能使得到的参数稀疏化。 ??正则化是 指在损失函 数中加入权 值向量w的绝 对值之和, ??的功能是 使权重稀疏 在损失函数 中加入权值 向量w的平 方和,??的 功能是使权 重平滑。 ?(?) = 1 ? σ?=1 ? ? ̰? ? , ? ? + ? 2? σ?=1 ? | ??| ??正则化可以防止过拟合 ? σ?=1 ? ? ̰? (?) , ?(?) + ? 2? σ?=1 ? ?? 2 12 正则化 x[2] x[3] x[1] a[L] DropOut Dropout的功能类似于?2正则化,与?2正则化不同的是,被应用的方 式不同,dropout也会有所不同,甚至更适用于不同的输入范围 keep-prob=1(没有dropout) keep-prob=0.5(常用取值,保留一半神经元)0 码力 | 19 页 | 1.09 MB | 1 年前3
 机器学习课程-温州大学-05机器学习-机器学习实践正则化能使得到的参数稀疏化。 ??正则化是 指在损失函 数中加入权 值向量w的绝 对值之和, ??的功能是 使权重稀疏 在损失函数 中加入权值 向量w的平 方和,??的 功能是使权 重平滑。 25 正则化 x[2] x[3] x[1] a[L] DropOut Dropout的功能类似于?2正则化,与?2正则化不同的是,被应用的方 式不同,dropout也会有所不同,甚至更适用于不同的输入范围0 码力 | 33 页 | 2.14 MB | 1 年前3 机器学习课程-温州大学-05机器学习-机器学习实践正则化能使得到的参数稀疏化。 ??正则化是 指在损失函 数中加入权 值向量w的绝 对值之和, ??的功能是 使权重稀疏 在损失函数 中加入权值 向量w的平 方和,??的 功能是使权 重平滑。 25 正则化 x[2] x[3] x[1] a[L] DropOut Dropout的功能类似于?2正则化,与?2正则化不同的是,被应用的方 式不同,dropout也会有所不同,甚至更适用于不同的输入范围0 码力 | 33 页 | 2.14 MB | 1 年前3
共 28 条
- 1
- 2
- 3













