积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(30)机器学习(30)

语言

全部中文(简体)(29)英语(1)

格式

全部PDF文档 PDF(30)
 
本次搜索耗时 0.044 秒,为您找到相关结果约 30 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AI大模型千问 qwen 中文文档

    max_new_tokens=512, streamer=streamer, ) 除了使用 TextStreamer 之外,我们还可以使用 TextIteratorStreamer ,它将可打印的文本存储在一 个队列中,以便下游应用程序作为迭代器来使用: # Repeat the code above before model.generate() # Starting here, we add streamer install vLLM>=0.3.0 ,但如果你正在使用 CUDA 11.8,请查看官方文档中的注意事项以获取有关安装的帮助(链接 )。我们也建议你通过 pip install ray 安装 ray,以便支持分布式服务。 1.10. vLLM 19 Qwen 1.10.2 离线推理 Qwen2 代码支持的模型,例如 Qwen1.5,都被 vLLM 所支持。vLLM 最简单的使用方式是通过以下演示进行 离线批量推理。 something about large language models."}, ] ) print("Chat response:", chat_response) 1.10.4 多卡分布式部署 要提高模型的处理吞吐量,分布式服务可以通过利用更多的 GPU 设备来帮助您。特别是对于像 Qwen1. 5-72B-Chat 这样的大模型,单个 GPU 无法支撑其在线服务。在这里,我们通过演示如何仅通过传入参数
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    基于深度学习模型的推荐流程,场景与⽬标 Serving系统 HDFS 数据 通道 训练系统 召回 业务服务 排序 混排 模型 管理 上线 管理 ⽆量 RGW/Cos/ kafka 样本 存储 实时样本 ⽣成服务 离线样本 ⽣成任务 数据 通道 特征 处理 模型 登记 模型 上线 预测 请求 数据 落地 ⽆量 ⽤户⾏为数据上报 特征 库 内容 获取 请求 � 推荐场景的重要性 Embedding以稀疏的⽅式表达信息 ⼤规模推荐模型深度学习系统基本解决维度 分布式 系统 ⼤规模 模型 优化 算法 1. ⾼性能 2. 效果⽆ 损的优化 � Feature 1(基本特点) � Feature 2(数据的时空 特点) � Feature3(机器学习 的特点) ⼤规模推荐模型深度学习系统基本解决维度 分布式 系统 ⼤规模 模型 优化 算法 1. ⾼性能 2. Feature3(机器学习 的特点) 训练框架—基于参数服务器架构的分布式训练框架 TB级模型 分⽚ 存储/更新 百TB数据 分⽚训练 Feature 1: 动态空间 Feature 2.1:短时间内只有部分item和user 被命中,只有部分参数被⽤到 参数按需 获取/更新 Storage 异步训练流⽔线和多级存储:提升性能,降低内存成本 � 问题: � Learner线程中参数拉取和参数更新对性能影响⼤
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    练周期模型融合 • 模型结构训练与推理兼容:在线PS与离线PS模型结构兼容,自动模型参数转换 • 稳定性优化 • 模型快照:基于ps-scheduler的周期模型版本探测与保存,模型稀疏化分片存储 • 冷备容灾:基于checkpoint机制(Local模式&Remote模式),实现参数服务的高可用,支持基于模型的异构集群迁移,支持集 群扩缩容 • 性能优化 • 通信优化:数据请求(P 引起的性能损耗,性能提升3-5倍 • 分区优化:支持多种分区策略(RANGE/HASH/MOD),解决数据倾斜导致的流量热点瓶颈问题,性能提升2-5倍 • 存储优化:自定义存储方式(ByRow&ByKey),基于row进行矩阵压缩存储,参数内存占用减少90% 3 在线机器学习-参数服务器 模型验证 离线训练 实时训练 模型训练 模型部署 在线服务 离线验证 在线发布 在线验证 在线一致性/ • PS&MPI:DistributionStrategy API,统一分布式语义,解耦分布式架构与模型训练框架 • 使用FP16通信,使用FP32做计算,带宽压力降低一倍 • IO优化 • 多线程样本并发读取,样本读取与计算PIPELINE,实现计算与IO的overlap 4 深度学习-深度学习模型训练 • 分布式模型推理框架:WeiServing 异构CPU集群 kubernetes/ol-submit
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 超大规模深度学习在美团的应用-余建平

    模型训练框架 • 模型可变计算路径  运行阶段  计算图裁剪 模型训练框架 • 应用场景——离线预计算  模型召回,ANN检索  粗排模型,降低线上计算量 • 分布式Sharding  模型分片存储,支持超大规模模型  数据并行计算,加速Optimizer计算 • 低频特征过滤  Counting Bloom Filter  概率方式 • 模型数据通路  Base PS的参数放置策略 • Ps分布式分片的均衡,避免分片大小不一致  NN网络矩阵按行切分,解决请求包不均衡问题  特征按照Hash方式分布式存储 • 模型并行调超参  grid search  random search PS的多模型训练 • 提高内存使用效率  model group内共享特征key的存储 • 超大规模模型 -> 高扇出的分布式PS • 长尾效应:单个 N PS Req … … reply 1 reply 2 reply N … 超过t Backup Request Cancel Request 流式模型的通路 • 持久化存储  本地disk存储,持久化对齐kafka的数据 • PS快速failover  Compaction机制,降低load数据量 • Online Learning对数据流的要求  不重不丢:重复的数据会使模型有偏,数据的缺失
    0 码力 | 41 页 | 5.96 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    图像视频算法库 Bert TextInput Optim izer 性能优越:  分布式存储  分布式查询 功能完备:  GSL/负采样  主流图算法  异构图 (user/item/attribute)  动态图 标准化: Standard Libraries Graph-Learn: 分布式图算法库 标准化: Standard Solutions Continuous Optimization: Prometheus Grafana 读取metric 消息队列(datahub/kafka) PAI-REC平台 自动化降级 负载均衡 灰度发布 超时控制 平台支持 日志SLS 在线存储 Hologres/OTS BE Redis 读取数据 向量引擎 BE/Hologres/Faiss/Milvus 向量检索 冷启动召 回 冷启动排 序 Pipeline1 Intelligence) • 一键部署、弹性扩缩 • 多框架、多语言 • 推理优化Blade • 多维度监控+报警 • 自定义镜像 • 全托管+半托管 • 分布式训练优化 • 超大资源池 智能标注 可视化建模(Designer) 分布式训练(DLC) 在线服务(EAS) 生态市场 开发者工具 • CLI • PAIFlow • OpenAPI AI能力 体验中心 开源 PAI平台(Platform
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    example.com:2222” ], “ps”: [ “ps0.example.com:2222”, “ps1.example.com:2222” ]}) 分布式版本ClusterSpec定义:� 带来的问题:� • ⼿动指定机器很繁琐� • 端⼝冲突� • 机器负载不均� TensorFlow使用现状及痛点 • ⼿动分发训练样本� • ⼿动拉取训练模型� 作业进程的资源隔离� Yarn能解决什么问题:� TensorFlow on Yarn设计 • 同时支持单机和分布式TensorFlow程序� • 支持GPU资源管理和调度� • 不再需要⼿动配置CluserSpec信息,仅需要设置work 和ps的数量� • 训练数据和训练模型基于HDFS统⼀存储� • 作业训练结束自动回收work、ps和Tensorboard进程� • 训练效果和性能没有损失� --board-enable true \ #是否开启Tensorboard服务� --conf tf.file.download.thread.nums=10 #其他参数设置� 提交脚本示例(分布式版本):� TensorFlow on Yarn设计 Yarn首页作业信息:� 作业类型 集群GPU资源概况 作业分配到的GPU数量 TensorFlow on Yarn设计
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒

    l单机、简易分布式人脸检测、跟踪、比对平台 l处理数十路到数百路监控摄像头数据 l千万级别深度学习特征检索 l行业试水 2018-2019 l云原生Cloud-Native超大规模视图存储、处理、检 索 l处理数万到数十万路,城市范围级别监控、门禁摄 像头数据 l10-100 Billion级别深度学习特征检索 - PB以上级别数据库存储 - 100PB级别抓拍图片存储 - 每秒万次并发检索请求 ;但配套设施落后(e.g. Spark on K8s, GitlabCI) • 容器系统调用栈深,需要仔细验证操作系统,内核及异构设备驱动的兼容性 • Kubernetes对NUMA、异构计算、存储设备的调度能力待加强 1.6 nvidia/gpu custom scheduler 1.8 local-volume 1.10 CPU manager Device plugin 1 构建百万以上级别的对象缓存,需要 仔细优化 百倍慢于等价的C实现! 回顾 • 智慧城市中,在智能安防领域机器视觉有着爆发式应用 • 我们使用基于深度学习的机器视觉技术,构建了超大规模的自我演化 的分布式智能系统 • 在构建这个规模的系统中,我们广泛使用了Kubernetes、Go等流行技 术,“那些年踩过的坑”
    0 码力 | 23 页 | 9.26 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》1-基础理论篇:TensorFlow 2设计思想

    TensorFlow 2 核心模块 TensorFlow 2 核心模块概览 tf.keras:分布式和高性能的 Keras • 构建和训练模型的高层次 API • API 完全兼容原生 Keras • 支持保存和加载 TensorFlow SavedModel • 支持 Eager Execution • 支持分布式训练 tf.data:功能强大的数据管理模块 支持多种数据处理 图像解码 Shuffle py_function 重采样 支持多种数据格式 图像文件 文本文件 CSV 文件 NumPy 数组 Python 生成器 TFRecord 支持多种数据来源 本地文件 分布式文件系统 对象存储系统 tf.distribute:一行代码实现分布式 Training API MirroredStrategy TPUStrategy MultiWorkerMirro redStrategy CentralStorageSt CPU 环境的分布式 YOLOv3 实现》 魂斗罗游戏中识别角色 K8s Pod K8s Pod K8s Pod Horovod(CPU) on Kubernetes model TensorFlow Serving Keras 模型训练 • DataGenerator • 随机读取 … … 图片训练集 Ceph 数据并行实现 基于 Horoved CPU 平台的分布式模型训练及部署
    0 码力 | 40 页 | 9.01 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    内存 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 12.4.3 存储器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518 12.4.4 CPU 多机训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 12.7.4 键值存储 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547 13 计算机视觉 549 图1 中用不同的颜色呈现: 目录 3 图1: 全书结构 • 第一部分包括基础知识和预备知识。1节 提供深度学习的入门课程。然后在 2节 中,我们将快速介绍实 践深度学习所需的前提条件,例如如何存储和处理数据,以及如何应用基于线性代数、微积分和概率基 本概念的各种数值运算。3节 和 4节 涵盖了深度学习的最基本概念和技术,例如线性回归、多层感知机 和正则化。 • 接下来的五章集中讨论现代深度学习技术。5节
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 谭国富:深度学习在图像审核的应用

    经过多轮优化,可以准确快速地识别图片中所包含的 各类图标 l 烟雾,吸烟识别 Ø 基于视频直播监管需求, 提供吸烟,烟雾,涉嫌吸毒 等场景的识别能力 SACC2017 深度学习介绍 深度网络训练选择 加快训练 - 分布式训练系统 图像海量数据的积累 02 深度学习技术介绍 加快计算 - 深度学习算法加速 RPN SACC2017 技 术 发 展 应 用 突 破 1956 达特茅 斯会议 标志AI 诞生 Job 3 监控/启停 任务调度/资源管理 监控上报 cephfs存储集 群 本地文件系统 数据 模型/日志 client 管理数据 提取模型、 查看日志 提交/管理任务 用户 docker.oa.co m 自动拉取镜像 Redis 冷数据 热任务/监控数据/集群信息 • 任务监控与自动重启 • 分布式多机训练,不可避免遇到由于硬件/网 络波动引起的异常 • 监控任务运行状况,当任务发生异常时,选
    0 码力 | 32 页 | 5.17 MB | 1 年前
    3
共 30 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
AI模型千问qwen中文文档推荐基础特点大规规模大规模深度学习系统设计微博在线机器实践黄波超大超大规模美团应用建平阿里云上建模程孟力TensorFlowonYarn遇上数据QCon北京2018未来都市智慧城市基于视觉陈宇恒快速入门实战理论基础理论思想动手v2国富图像审核
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩