 深度学习与PyTorch入门实战 - 18.1 激活函数梯度激活函数及其梯度 主讲人:龙良曲 Activation Functions Derivative Sigmoid / Logistic Derivative torch.sigmoid Tanh = 2??????? 2? − 1 Derivative torch.tanh Rectified Linear Unit Derivative F.relu 下一课时 Loss及其梯度0 码力 | 14 页 | 724.00 KB | 1 年前3 深度学习与PyTorch入门实战 - 18.1 激活函数梯度激活函数及其梯度 主讲人:龙良曲 Activation Functions Derivative Sigmoid / Logistic Derivative torch.sigmoid Tanh = 2??????? 2? − 1 Derivative torch.tanh Rectified Linear Unit Derivative F.relu 下一课时 Loss及其梯度0 码力 | 14 页 | 724.00 KB | 1 年前3
 常见函数梯度常见函数梯度 主讲人:龙良曲 Common Functions ?? + ? ??? + ?? ??? + ?? [? − (?? + ?)]? ?log(?? + ?) 下一课时 什么是激活函数 Thank You.0 码力 | 9 页 | 282.15 KB | 1 年前3 常见函数梯度常见函数梯度 主讲人:龙良曲 Common Functions ?? + ? ??? + ?? ??? + ?? [? − (?? + ?)]? ?log(?? + ?) 下一课时 什么是激活函数 Thank You.0 码力 | 9 页 | 282.15 KB | 1 年前3
 激活函数与GPU加速激活函数与GPU加速 主讲人:龙良曲 Leaky ReLU simply SELU softplus GPU accelerated 下一课时 测试 Thank You.0 码力 | 11 页 | 452.22 KB | 1 年前3 激活函数与GPU加速激活函数与GPU加速 主讲人:龙良曲 Leaky ReLU simply SELU softplus GPU accelerated 下一课时 测试 Thank You.0 码力 | 11 页 | 452.22 KB | 1 年前3
 Keras: 基于 Python 的深度学习库的相同的栈式 LSTM 模型 . . . . . . . . . . . . 15 3.2 函数式 API 指引 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 开始使用 Keras 函数式 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Sequential 顺序模型 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.1 Sequential 顺序模型 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 函数式 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.1 Model 类 API . . . . . . . . . . . . . . . . . . . . . .0 码力 | 257 页 | 1.19 MB | 1 年前3 Keras: 基于 Python 的深度学习库的相同的栈式 LSTM 模型 . . . . . . . . . . . . 15 3.2 函数式 API 指引 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 开始使用 Keras 函数式 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Sequential 顺序模型 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.1 Sequential 顺序模型 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 函数式 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.1 Model 类 API . . . . . . . . . . . . . . . . . . . . . .0 码力 | 257 页 | 1.19 MB | 1 年前3
 动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . 81 2.7.1 查找模块中的所有函数和类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.7.2 查找特定函数和类的用法 . . . . . . . . . . . . . . . . . . . . . . . . . . . 定义模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.5 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.6 定义优化算法 . . . 4 初始化模型参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.3.5 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 ii 3.3.6 定义优化算法0 码力 | 797 页 | 29.45 MB | 1 年前3 动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . 81 2.7.1 查找模块中的所有函数和类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.7.2 查找特定函数和类的用法 . . . . . . . . . . . . . . . . . . . . . . . . . . . 定义模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.5 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.6 定义优化算法 . . . 4 初始化模型参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.3.5 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 ii 3.3.6 定义优化算法0 码力 | 797 页 | 29.45 MB | 1 年前3
 【PyTorch深度学习-龙龙老师】-测试版2021121 感知机 6.2 全连接层 6.3 神经网络 6.4 激活函数 6.5 输出层设计 6.6 误差计算 6.7 神经网络类型 6.8 油耗预测实战 6.9 参考文献 第 7 章 反向传播算法 7.1 导数与梯度 7.2 导数常见性质 7.3 激活函数导数 7.4 损失函数梯度 7.5 全连接层梯度 预览版202112 7 7.6 链式法则 7.7 反向传播算法 7.8 Himmelblau 函数优化实战 7.9 反向传播算法实战 7.10 参考文献 第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 8.8 参考文献 第 WGAN 原理 13.8 WGAN-GP 实战 13.9 参考文献 第 14 章 强化学习 14.1 先睹为快 14.2 强化学习问题 14.3 策略梯度方法 14.4 值函数方法 14.5 Actor-Critic 方法 14.6 小结 14.7 参考文献 第 15 章 自定义数据集 15.1 精灵宝可梦数据集 15.2 自定义数据集加载流程0 码力 | 439 页 | 29.91 MB | 1 年前3 【PyTorch深度学习-龙龙老师】-测试版2021121 感知机 6.2 全连接层 6.3 神经网络 6.4 激活函数 6.5 输出层设计 6.6 误差计算 6.7 神经网络类型 6.8 油耗预测实战 6.9 参考文献 第 7 章 反向传播算法 7.1 导数与梯度 7.2 导数常见性质 7.3 激活函数导数 7.4 损失函数梯度 7.5 全连接层梯度 预览版202112 7 7.6 链式法则 7.7 反向传播算法 7.8 Himmelblau 函数优化实战 7.9 反向传播算法实战 7.10 参考文献 第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 8.8 参考文献 第 WGAN 原理 13.8 WGAN-GP 实战 13.9 参考文献 第 14 章 强化学习 14.1 先睹为快 14.2 强化学习问题 14.3 策略梯度方法 14.4 值函数方法 14.5 Actor-Critic 方法 14.6 小结 14.7 参考文献 第 15 章 自定义数据集 15.1 精灵宝可梦数据集 15.2 自定义数据集加载流程0 码力 | 439 页 | 29.91 MB | 1 年前3
 PyTorch OpenVINO 开发实战系列教程第一篇本书内容以 Python 完成全部代码构建与程序演示。本章的主要目标是帮助初 次接触 Python 与 Pytorch 的读者搭建好开发环境,认识与理解 Pytorch 框架 中常见的基础操作函数、学会使用它们完成一些基础的数据处理与流程处理, 为后续内容学习打下良好基础。 好了,下面就让我们来一起开启这段 Pytorch 框架的深度学习破冰之旅。 PyTorch + OpenVINO Release)、Beta 版本、原型版本(Prototype)。 其中稳定版本长期支持维护没有明显的性能问题与缺陷,理论 上支持向后兼容的版本;Beta 版本是基于用户反馈的改动版 本,可能有 API/SDK 函数改动,性能有进一步需要提升的空间; 原型版本是新功能还不可以,需要开发不能通过 pip 方式直接 安装。 1.1.2 Pytorch 的模块与功能 Pytorch 当前支持绝大数的深度学习常见的算子操作,基于相 训练、导出与部署等操作。这些功能的相关模块主要有如下: 1)torch.nn 包,里面主要包含构建卷积神经网络的各种算子 操作,主要包括卷积操作(Conv2d、Conv1d、Conv3d)激 活函数、序贯模型 (Sequential)、功能函数 (functional)、损 失功能、支持自定义的模型类(Module)等。通过它们就可 以实现大多数的模型结构搭建与生成。 2)torch.utils 包,里面主要包括训练模型的输入数据处理类、0 码力 | 13 页 | 5.99 MB | 1 年前3 PyTorch OpenVINO 开发实战系列教程第一篇本书内容以 Python 完成全部代码构建与程序演示。本章的主要目标是帮助初 次接触 Python 与 Pytorch 的读者搭建好开发环境,认识与理解 Pytorch 框架 中常见的基础操作函数、学会使用它们完成一些基础的数据处理与流程处理, 为后续内容学习打下良好基础。 好了,下面就让我们来一起开启这段 Pytorch 框架的深度学习破冰之旅。 PyTorch + OpenVINO Release)、Beta 版本、原型版本(Prototype)。 其中稳定版本长期支持维护没有明显的性能问题与缺陷,理论 上支持向后兼容的版本;Beta 版本是基于用户反馈的改动版 本,可能有 API/SDK 函数改动,性能有进一步需要提升的空间; 原型版本是新功能还不可以,需要开发不能通过 pip 方式直接 安装。 1.1.2 Pytorch 的模块与功能 Pytorch 当前支持绝大数的深度学习常见的算子操作,基于相 训练、导出与部署等操作。这些功能的相关模块主要有如下: 1)torch.nn 包,里面主要包含构建卷积神经网络的各种算子 操作,主要包括卷积操作(Conv2d、Conv1d、Conv3d)激 活函数、序贯模型 (Sequential)、功能函数 (functional)、损 失功能、支持自定义的模型类(Module)等。通过它们就可 以实现大多数的模型结构搭建与生成。 2)torch.utils 包,里面主要包括训练模型的输入数据处理类、0 码力 | 13 页 | 5.99 MB | 1 年前3
 AI大模型千问 qwen 中文文档下,我们将展示如何使用 vLLM 构建一个与 OpenAI API 兼容的 API 服务。 首先,确保你已经安装 vLLM>=0.3.0 : pip install vllm 运行以下代码以构建 vllm 服务。此处我们以 Qwen1.5-7B-Chat 为例: python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen1.5-7B-Chat OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( (续下页) 1.2. 快速开始 5 Qwen (接上页) api_key=openai_api_key, b base_url=openai_api_base, ) chat_response = client.chat.completions.create( model="Qwen/Qwen1.5-7B-Chat", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content":0 码力 | 56 页 | 835.78 KB | 1 年前3 AI大模型千问 qwen 中文文档下,我们将展示如何使用 vLLM 构建一个与 OpenAI API 兼容的 API 服务。 首先,确保你已经安装 vLLM>=0.3.0 : pip install vllm 运行以下代码以构建 vllm 服务。此处我们以 Qwen1.5-7B-Chat 为例: python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen1.5-7B-Chat OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( (续下页) 1.2. 快速开始 5 Qwen (接上页) api_key=openai_api_key, b base_url=openai_api_base, ) chat_response = client.chat.completions.create( model="Qwen/Qwen1.5-7B-Chat", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content":0 码力 | 56 页 | 835.78 KB | 1 年前3
 Chatbots 中对话式交互系统的分析与应用(2016) Chitchat-Bot: 开域闲聊机器人 闲聊机器人 • Seq2seq+Attention Question 闲聊机器人 • 问题 • 容易产生“安全”的答案 • 目标函数中考虑 • 对话容易继续进行 • 降低产生“我不知道”这类答案的可能性 • 带来新的信息 • 让产生的答复与之前的不同 • 语义要连贯 • 加入互信息:同时考虑从answer到question的概率 清晰的知识结构和边界 • 非标准化服务,信息不对称 • 能够通过数据积累提升服务质量 • 能够建立知识和技术壁垒 • 对话作为粘合剂 • 用户画像,推荐系统,营销转化 爱因互动:API in, API out 各路API,快速对接 爱因互动合作示例 • 在线订餐位 • 合作方向:售前、售后;金融、保险 启示 • 如果无法理解问题,那就尽可能给出正确答案 • 焦点词(Focus) •0 码力 | 39 页 | 2.24 MB | 1 年前3 Chatbots 中对话式交互系统的分析与应用(2016) Chitchat-Bot: 开域闲聊机器人 闲聊机器人 • Seq2seq+Attention Question 闲聊机器人 • 问题 • 容易产生“安全”的答案 • 目标函数中考虑 • 对话容易继续进行 • 降低产生“我不知道”这类答案的可能性 • 带来新的信息 • 让产生的答复与之前的不同 • 语义要连贯 • 加入互信息:同时考虑从answer到question的概率 清晰的知识结构和边界 • 非标准化服务,信息不对称 • 能够通过数据积累提升服务质量 • 能够建立知识和技术壁垒 • 对话作为粘合剂 • 用户画像,推荐系统,营销转化 爱因互动:API in, API out 各路API,快速对接 爱因互动合作示例 • 在线订餐位 • 合作方向:售前、售后;金融、保险 启示 • 如果无法理解问题,那就尽可能给出正确答案 • 焦点词(Focus) •0 码力 | 39 页 | 2.24 MB | 1 年前3
 深度学习与PyTorch入门实战 - 27. MLP网络层implement forward() Step1. Step2. Step3. nn.ReLU v.s. F.relu() ▪ class-style API ▪ function-style API Train 下一课时 激活函数与GPU Thank You.0 码力 | 13 页 | 992.88 KB | 1 年前3 深度学习与PyTorch入门实战 - 27. MLP网络层implement forward() Step1. Step2. Step3. nn.ReLU v.s. F.relu() ▪ class-style API ▪ function-style API Train 下一课时 激活函数与GPU Thank You.0 码力 | 13 页 | 992.88 KB | 1 年前3
共 72 条
- 1
- 2
- 3
- 4
- 5
- 6
- 8













