积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(32)机器学习(32)

语言

全部中文(简体)(31)英语(1)

格式

全部PDF文档 PDF(32)
 
本次搜索耗时 0.056 秒,为您找到相关结果约 32 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒

    人脸识别大幅提高精度,商汤科 技首次突破人类肉眼识别准确率 ,领先于Facebook Google5000万美元招入 Hinton,发布基于深度学习的 搜索引擎 Microsoft 深度学习驱动的语音 识别大幅提升精度 软银孙正义设立1000亿美元人 工智能基金,320亿美元收购芯 片架构公司ARM 2016.7 公司简介 历史业绩 领先技术 20年 科研经验 800余位 技术研发人员 150余位 - 处理特殊输入,如模糊、黑白照片 - 适配具有不同特征的数据源 - 在严肃应用中,客户追求100%准确率,算法性能提升永无止境 • 深度学习模型需要在准确率和速度上做均衡 - 使用更加精巧的模型和Operator设计 - 使用模型压缩算法,在基本保障准确率的情况下大幅提升速度 - 利用最新的硬件特性,如GPU TensorCore/int8 *示意图来自互联网 Kubernetes在异构系统调度中的挑战 Kubernetes版本发布快,新特性更新频繁,对异构调度的支持不断加强;但配套设施落后(e.g. Spark on K8s, GitlabCI) • 容器系统调用栈深,需要仔细验证操作系统,内核及异构设备驱动的兼容性 • Kubernetes对NUMA、异构计算、存储设备的调度能力待加强 1.6 nvidia/gpu custom scheduler 1.8 local-volume 1.10 CPU
    0 码力 | 23 页 | 9.26 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-时间序列总结

    2018年10月 时间间隔 由起始时间戳和 结束时间戳表示 8 创建时间序列 Pandas中,时间戳使用Timestamp(Series派生的子 类)对象表示。 该对象与datetime具有高度的兼容性,可以直接通过 to_datetime()函数将datetime转换为TimeStamp对象。 pd.to_datetime('20180828') 9 创建时间序列 如果传入的是多个 某分店按天统计了2017年全年的销售数据,现在总经理 想抽查分店8月28日(七夕)的销售情况,如果只是单 独拎出来当天的数据,则这个数据比较绝对,无法很好 地反映出这个日期前后销售的整体情况。 53 数据统计—滑动窗口 为了提升数据的准确性,可以将某个点的取 值扩大到包含这个点的一段区间,用区间内 的数据进行判断。 例如,我们可以将8月24日到9月2日的数据拿出来,求 此区间的平均值作为抽查结果。 54 数据统计—滑动窗口
    0 码力 | 67 页 | 1.30 MB | 1 年前
    3
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    性能优化 • 通信优化:数据请求(PULL&PUSH)聚合,同模型多矩阵并发,锁粒度优化,性能提升5-10倍 • 缓存优化:使用堆外内存与LRU过期机制,解决GC引起的性能损耗,性能提升3-5倍 • 分区优化:支持多种分区策略(RANGE/HASH/MOD),解决数据倾斜导致的流量热点瓶颈问题,性能提升2-5倍 • 存储优化:自定义存储方式(ByRow&ByKey),基于row进行矩阵压缩存储,参数内存占用减少90% 小) • 数据规模越大,效果越好 • 月级数据规模相比周级数据模型,效果相差5+% • 在线和离线模型效果对比 • 在线FM相比于离线FM,相关指标提升5+% • 完全在线初始化模型参数 • 增量在线FM相比于离线FM,相关指标提升8+% • 增量在线FM:即依托于离线模型初始化在线FM模型参数 3 在线机器学习-效果 • 深度化 • 特征深度化:特征embedding • 模型深度化:深度学习模型, 批量调度请求到GPU,增大并发和吞吐量 4 深度学习-分布式模型推理 • 深度特征效果对比 • 文本Embedding特征,相比于文本标签,相关指标提升约3+% • 基于word2vec、bert等生成embedding向量,提高了语义编码的准确性,降低了训练成本 • 指标提升主要来源于Embedding特征保留了更多原始信息,避免了标签带来的信息损失 • User/Item Embedding 协同召回
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-08机器学习-集成学习

    =1 ? ? ??, ??−1 ?? + ?(??: ??) ?0 ? = 0 前向分步算法: ?? ? = ෍ ?=1 ? ?(?: ??) 初始化提升树 第?棵决策树 迭代?次,包 含?棵决策树 的提升树 真实值 损失函数 备注:损失函数选择:如分类用指数损失函数,回归使用平方误差损失。 GBDT算法 18 GBDT算法 ?0 ? ?1 ? ?2 ? ,为残差,所以第?棵决策树? ?: ?? 是对该残差的拟合 回归使用平方误差损失 注意:提升树算法中的基学习器CART树是回归树 ?? ? = ??−1 ? + ? ?: ?? GBDT算法 20 回归树问题的提升算法: 输入:训练数据集? = ?1, ?1 , ?2, ?2 , … , ??, ?? 输出:提升树??(?) 1 初始化?0 ? = 0 2 对? = 1,2, … ? ( = ?? − ??−1 ?? , ? = 1,2, … , ? ? 拟合残差???学习一个回归树,得到?(?: ??) ? 更新??(?) = ??−1 ? + ? ?: ?? 3 得到回归提升树 ?? ? = ෍ ?=1 ? ?(?: ??) GBDT算法 21 min ? min ?1 ෍(?? − ?1)2 + min ?2 ෍(?? − ?2)2 ?1 = ?|
    0 码力 | 50 页 | 2.03 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    层数较浅,一般在 1~4 层左右,网络表达 能力有限。随着计算能力的提升和大数据时代的到来,高度并行化的 GPU 和海量数据让大 规模神经网络的训练成为可能。 2006 年,Geoffrey Hinton 首次提出深度学习的概念。2012 年,8 层的深层神经网络 AlexNet 发布,并在图片识别竞赛中取得了巨大的性能提升,此后几十层、数百层、甚至 上千层的神经网络模型相继提出,展现出深层神经网络强大的学习能力。业界一般将利用 自 AlexNet 模型提出后,各种各样的算法模型相继被发表,其中有 VGG 系列、 GoogLeNet 系列、ResNet 系列、DenseNet 系列等。ResNet 系列模型将网络的层数提升至数 百层、甚至上千层,同时保持性能不变甚至更优。它算法思想简单,具有普适性,并且效 果显著,是深度学习最具代表性的模型。 除了有监督学习领域取得了惊人的成果,在无监督学习和强化学习领域也取得了巨大 的算法模型是非常有用的一个方向。 预览版202112 第 1 章 人工智能绪论 8 图 1.10 数据集样本数趋势 图 1.11 数据集大小趋势 1.3.2 计算力 计算能力的提升是第三次人工智能复兴的一个重要因素。实际上,现代深度学习的基 础理论在 1980 年代就已经被提出,但直到 2012 年,基于两块 GTX580 GPU 训练的 AlexNet 发布后,深度学习的
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    Feature 1: 动态空间 Feature 2.1:短时间内只有部分item和user 被命中,只有部分参数被⽤到 参数按需 获取/更新 Storage 异步训练流⽔线和多级存储:提升性能,降低内存成本 � 问题: � Learner线程中参数拉取和参数更新对性能影响⼤ � 内存成为主要资源瓶颈。由于需要等待全部参数 就绪,Parameter Server难以利⽤速度慢的存储 Feature 2.1: 短时间内只有部分item和user被命中, 只有部分参数被⽤到 � GPU训练的优势 � 更少的机器节点,更少的分布式系统相关问题 � 更⾼的性价⽐ 1. 减少节点数 2. 提升节点同 构性 推理服务—分布式Serving架构 � 读写架构 � 多线程⽆锁:基于模型版本的读写分离 � 多机:多副本并⾏读取 � CPU:固定64位key,基于L1缓存的查 询优化 算法 1. ⾼性能 2. 效果⽆ 损的优化 � Feature 1(基本特点) � Feature 2(数据的时空 特点) � Feature3(机器学习 的特点) 通讯量可以变⼩来提升训练速度么?---参数,梯度压缩 � 问题: � 参数w和梯度g占据主要的通讯量,拉⻓了请求时间 � 常规的数值⽆损的压缩⽅法效果不明显 � 业界主流做法: � 量化 � 稀疏化。累计发
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 Qcon北京2018-《文本智能处理的深度学习技术》-陈运文

    业、CMMI3资质认 证、ISO9001质量管理体系认证、双软认证等最全面的企业服务资质。 权威认证的人工智能服务,可充分保障客户业务实践与业务安全 l 覆盖金融、制造、法律、电商、传媒等行业,提升企业文档自动化处理能力 为数百家中国知名客户提供完善的文本智能处理服务 01 文本智能处理背景简介 7 文本 语音 图像 人工智能 Voice Image Text 达观专注于人工智能中的文本处理细分领域 常需要分类算法融合提升效果 深度学习(CNN,RNN等) • 端到端,无需大量特征工程 • 框架通用性好,满足多领域需求 • 可以使用非监督语料训练字词向量提升效果 文本分类 CNN RNN CLSTM 序列标注 传统机器学习(CRF) • 需要大量特征工程 • 不同领域需要反复调整 深度学习(Bi-LSTM+CRF) • 多领域通用 • 输入层采用词向量,提升泛化能力 • 总 统 特 朗 普 将 考 察 苹 果 公 司 , 该 公 司 由 乔 布 斯 创 立。 05 总结&QA 总结:深度学习用于文本挖掘的优缺点 优点: 1,可以使用非监督数据训练字词向量,提升泛化能力 2,端到端,提供新思路 3,一些模型结构能够克服传统模型缺点 缺点: 1,小数据量效果不一定好 2,调参工作量有时不亚于特征工程 3,客户部署硬件环境限制 总结:一些实践经验 1,
    0 码力 | 46 页 | 25.61 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12机器学习-关联规则

    表示你购买了A商品后,你还会有 多大的概率购买B商品。 支持度: 指某个商品组合出现的次数与总次 数之间的比例,支持度越高表示该组合出现 的几率越大。 提升度: 提升度代表商品A的出现,对商品 B的出现概率提升了多少,即“商品 A 的出 现,对商品 B 的出现概率提升的”程度。 ?????????? = ????(?, ?) ???? ? ???? = ??????? ??????? ? × ?? ????? ? ??????? = ????(?, ?) ? 8 1.关联规则概述 置信度:?????????? = ????(?,?) ???? ? 提升度:???? = ??????? ??????? ? ×??????? ? 支持度:??????? = ????(?,?) ? =3/4 9 2.Apriori算法 01 关联规则概述 02 Apriori 算法
    0 码力 | 49 页 | 1.41 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    • 尽管AlexNet的代码只比LeNet多出几行,但学术界花了很多年才接受深度学习这一概念,并应用其出 色的实验结果。这也是由于缺乏有效的计算工具。 • Dropout、ReLU和预处理是提升计算机视觉任务性能的其他关键步骤。 练习 1. 试着增加迭代轮数。对比LeNet的结果有什么不同?为什么? 2. AlexNet对Fashion‐MNIST数据集来说可能太复杂了。 1. 尝 1. 在AlexNet中主要是哪部分占用显存? 2. 在AlexNet中主要是哪部分需要更多的计算? 3. 计算结果时显存带宽如何? 5. 将dropout和ReLU应用于LeNet‐5,效果有提升吗?再试试预处理会怎么样? Discussions90 7.2 使用块的网络(VGG) 虽然AlexNet证明深层神经网络卓有成效,但它没有提供一个通用的模板来指导后续的研究人员设计新的网 研究思路:可以应用的其他“规范化”转换?可以应用概率积分变换吗?全秩协方差估计可以么? Discussions95 7.6 残差网络(ResNet) 随着我们设计越来越深的网络,深刻理解“新添加的层如何提升神经网络的性能”变得至关重要。更重要的 是设计网络的能力,在这种网络中,添加层会使网络更具表现力,为了取得质的突破,我们需要一些数学基 础知识。 95 https://discuss.d2l.ai/t/1874
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 房源质量打分中深度学习应用及算法优化-周玉驰

    贝壳全部房源 2019 KE.COM ALL COPYRIGHTS RESERVED 7 目标&价值 平台  提升去化率 经纪人  提升效率和业绩 客户  降低看房成本 业主  缩减销售时长  市场需求恒定,优先成交好房 核心思想  选出好房 核心问题  提升带看效率  加速成交 核心价值 2019 KE.COM ALL COPYRIGHTS RESERVED 8 39 库存&新上房源 去化率  分数越高,质量越好 2019 KE.COM ALL COPYRIGHTS RESERVED 40 了解分 • 分数解释:打分是怎么计算的 • 如何操作可以提升打分? 优质房(A) 次优房(B) 一般房(C) 经纪人的疑问 质量分数 • 具有排序意义 • 很难引导经纪人 2019 KE.COM ALL COPYRIGHTS RESERVED 41
    0 码力 | 48 页 | 3.75 MB | 1 年前
    3
共 32 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
QCon北京2018未来都市智慧城市基于深度学习机器视觉陈宇恒课程温州大学时间序列总结微博在线实践黄波08集成PyTorch深度学习推荐模型基础特点大规规模大规模系统设计Qcon文本智能处理技术陈运文12关联规则动手v2房源质量打分应用算法优化周玉驰
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩