 【PyTorch深度学习-龙龙老师】-测试版202112部分,主要介绍神经网络的核心理论和共性知识,让读者理解深 度学习的本质;第 10~15 章为模型算法应用部分,主要介绍常见的算法与模型,让读者能够 学有所用。 在本书中编写时,很多英文词汇尚无法在业界找到一个共识翻译名,因此作者备注翻译 的英文原文,供读者参考,同时也方便读者日后阅读相关英文文献时,不至于感到陌生。 尽管每天都有深度学习相关算法论文的发布,但是作者相信,深度学习的核心思想和基 础理论 工智能算法。接下来我们将介绍人工智能、机器学习、深度学习的概念以及它们之间的联 系与区别。 1.1.1 人工智能 人工智能是让机器获得像人类一样具有思考和推理机制的智能技术,这一概念最早出 现在 1956 年召开的达特茅斯会议上。这是一项极具挑战性的任务,人类目前尚无法对人脑 的工作机制有全面、科学的认知,希望能制造达到人脑水平的智能机器无疑是难于上青 天。即使如此,在某个方面呈现出类似、接近甚至超越人类智能水平的机器被证明是可行 些具体任务场景强相 关的,一旦场景发生了变动,这些依靠人工设计的特征和先验设定无法自适应新场景,因 此需要重新设计算法模型,模型的通用性不强。 设计一种像人脑一样可以自动学习、自我调整的通用智能机制一直是人类的共同愿 景。从目前来看,深度学习是最接近通用智能的算法之一。在计算机视觉领域,过去需要 针对具体的任务设计特征、添加先验假设的做法,已经被深度学习算法彻底抛弃了,目前 在图片识别、目标0 码力 | 439 页 | 29.91 MB | 1 年前3 【PyTorch深度学习-龙龙老师】-测试版202112部分,主要介绍神经网络的核心理论和共性知识,让读者理解深 度学习的本质;第 10~15 章为模型算法应用部分,主要介绍常见的算法与模型,让读者能够 学有所用。 在本书中编写时,很多英文词汇尚无法在业界找到一个共识翻译名,因此作者备注翻译 的英文原文,供读者参考,同时也方便读者日后阅读相关英文文献时,不至于感到陌生。 尽管每天都有深度学习相关算法论文的发布,但是作者相信,深度学习的核心思想和基 础理论 工智能算法。接下来我们将介绍人工智能、机器学习、深度学习的概念以及它们之间的联 系与区别。 1.1.1 人工智能 人工智能是让机器获得像人类一样具有思考和推理机制的智能技术,这一概念最早出 现在 1956 年召开的达特茅斯会议上。这是一项极具挑战性的任务,人类目前尚无法对人脑 的工作机制有全面、科学的认知,希望能制造达到人脑水平的智能机器无疑是难于上青 天。即使如此,在某个方面呈现出类似、接近甚至超越人类智能水平的机器被证明是可行 些具体任务场景强相 关的,一旦场景发生了变动,这些依靠人工设计的特征和先验设定无法自适应新场景,因 此需要重新设计算法模型,模型的通用性不强。 设计一种像人脑一样可以自动学习、自我调整的通用智能机制一直是人类的共同愿 景。从目前来看,深度学习是最接近通用智能的算法之一。在计算机视觉领域,过去需要 针对具体的任务设计特征、添加先验假设的做法,已经被深度学习算法彻底抛弃了,目前 在图片识别、目标0 码力 | 439 页 | 29.91 MB | 1 年前3
 机器学习课程-温州大学-13深度学习-Transformer列编码成一个上下文矩阵,在使用Decoder来解码。当然,我们仅仅把context vector作为编码器到解码器的输入。 7 1.Transformer介绍 Attention注意力机制 在介绍什么是注意力机制之前, 先让大家看一张图片。当大家看 到下面图片,会首先看到什么内 容?当过载信息映入眼帘时,我 们的大脑会把注意力放在主要的 信息上,这就是大脑的注意力机 制。 8 1 速度快:Attention 解决了 RNN及其变体模型不能并行计算的问题。Attention机 制每一步计算不依赖于上一步的计算结果,因此可以和CNN一样并行处理。 3.效果好:在Attention 机制引入之前,有一个问题大家一直很苦恼:长距离的信 息会被弱化,就好像记忆能力弱的人,记不住过去的事情是一样的。 10 2017年google的机器翻译团队在 NIPS上发表了Attention 量上更优、更易于并行化,所需训练时间明显更少 ◼ Transformer通过成功地将其应用于具有大量和有限训 练数据的分析,可以很好地推广到其他任务 ◼ Transformer,它完全基于注意力机制, 完全不用重复 和卷积,因而这些模型在质量上更优,同时更易于并 行化,并且需要的训练时间明显更少。 ◼ Transformer出现以后,迅速取代了RNN系列变种,跻 身主流模型架构基础。(RNN缺陷正在于流水线式的0 码力 | 60 页 | 3.51 MB | 1 年前3 机器学习课程-温州大学-13深度学习-Transformer列编码成一个上下文矩阵,在使用Decoder来解码。当然,我们仅仅把context vector作为编码器到解码器的输入。 7 1.Transformer介绍 Attention注意力机制 在介绍什么是注意力机制之前, 先让大家看一张图片。当大家看 到下面图片,会首先看到什么内 容?当过载信息映入眼帘时,我 们的大脑会把注意力放在主要的 信息上,这就是大脑的注意力机 制。 8 1 速度快:Attention 解决了 RNN及其变体模型不能并行计算的问题。Attention机 制每一步计算不依赖于上一步的计算结果,因此可以和CNN一样并行处理。 3.效果好:在Attention 机制引入之前,有一个问题大家一直很苦恼:长距离的信 息会被弱化,就好像记忆能力弱的人,记不住过去的事情是一样的。 10 2017年google的机器翻译团队在 NIPS上发表了Attention 量上更优、更易于并行化,所需训练时间明显更少 ◼ Transformer通过成功地将其应用于具有大量和有限训 练数据的分析,可以很好地推广到其他任务 ◼ Transformer,它完全基于注意力机制, 完全不用重复 和卷积,因而这些模型在质量上更优,同时更易于并 行化,并且需要的训练时间明显更少。 ◼ Transformer出现以后,迅速取代了RNN系列变种,跻 身主流模型架构基础。(RNN缺陷正在于流水线式的0 码力 | 60 页 | 3.51 MB | 1 年前3
 动手学深度学习 v2.0运算符 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.1.3 广播机制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.1.4 索引和切片 束搜索 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 10 注意力机制 381 10.1 注意力提示 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 中,我们引入了循环神经网络(recurrent neural network,RNN),这是一种利用数据中的时间或序列 结构的模型,通常用于自然语言处理和时间序列预测。在 10节 中,我们介绍了一类新的模型,它采用 了一种称为注意力机制的技术,最近它们已经开始在自然语言处理中取代循环神经网络。这一部分将 帮助读者快速了解大多数现代深度学习应用背后的基本工具。 • 第三部分讨论可伸缩性、效率和应用程序。首先,在 11节 中,我们讨论了用于训练深度学习模型的几0 码力 | 797 页 | 29.45 MB | 1 年前3 动手学深度学习 v2.0运算符 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.1.3 广播机制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.1.4 索引和切片 束搜索 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 10 注意力机制 381 10.1 注意力提示 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 中,我们引入了循环神经网络(recurrent neural network,RNN),这是一种利用数据中的时间或序列 结构的模型,通常用于自然语言处理和时间序列预测。在 10节 中,我们介绍了一类新的模型,它采用 了一种称为注意力机制的技术,最近它们已经开始在自然语言处理中取代循环神经网络。这一部分将 帮助读者快速了解大多数现代深度学习应用背后的基本工具。 • 第三部分讨论可伸缩性、效率和应用程序。首先,在 11节 中,我们讨论了用于训练深度学习模型的几0 码力 | 797 页 | 29.45 MB | 1 年前3
 微博在线机器学习和深度学习实践-黄波定时轮询 Kafka Hdfs 样本输出 3 在线机器学习-实时样本生成 • 多流拼接 • 曝光,互动,点击,真实阅读等多种数据流接入并多流拼接 • 如何解决日志延时问题 • 延迟等待机制,先到先走 • 定时轮寻,最长N分钟等待 • Kafka 堆积监控,实时报警 • 如何解决内存问题 • 调整内存参数 • 关闭多余的监控点 • 如何异常处理 • 自动化监控与修复系统 率 • 在线版本切换:基于ZK的版本感知机制,动态进行版本切换,实现BASE模型的热更新,实时训练与离线训练周期模型融合 • 模型结构训练与推理兼容:在线PS与离线PS模型结构兼容,自动模型参数转换 • 稳定性优化 • 模型快照:基于ps-scheduler的周期模型版本探测与保存,模型稀疏化分片存储 • 冷备容灾:基于checkpoint机制(Local模式&Remote模式),实现参 模型的异构集群迁移,支持集 群扩缩容 • 性能优化 • 通信优化:数据请求(PULL&PUSH)聚合,同模型多矩阵并发,锁粒度优化,性能提升5-10倍 • 缓存优化:使用堆外内存与LRU过期机制,解决GC引起的性能损耗,性能提升3-5倍 • 分区优化:支持多种分区策略(RANGE/HASH/MOD),解决数据倾斜导致的流量热点瓶颈问题,性能提升2-5倍 • 存储优化:自定义存储方式(B0 码力 | 36 页 | 16.69 MB | 1 年前3 微博在线机器学习和深度学习实践-黄波定时轮询 Kafka Hdfs 样本输出 3 在线机器学习-实时样本生成 • 多流拼接 • 曝光,互动,点击,真实阅读等多种数据流接入并多流拼接 • 如何解决日志延时问题 • 延迟等待机制,先到先走 • 定时轮寻,最长N分钟等待 • Kafka 堆积监控,实时报警 • 如何解决内存问题 • 调整内存参数 • 关闭多余的监控点 • 如何异常处理 • 自动化监控与修复系统 率 • 在线版本切换:基于ZK的版本感知机制,动态进行版本切换,实现BASE模型的热更新,实时训练与离线训练周期模型融合 • 模型结构训练与推理兼容:在线PS与离线PS模型结构兼容,自动模型参数转换 • 稳定性优化 • 模型快照:基于ps-scheduler的周期模型版本探测与保存,模型稀疏化分片存储 • 冷备容灾:基于checkpoint机制(Local模式&Remote模式),实现参 模型的异构集群迁移,支持集 群扩缩容 • 性能优化 • 通信优化:数据请求(PULL&PUSH)聚合,同模型多矩阵并发,锁粒度优化,性能提升5-10倍 • 缓存优化:使用堆外内存与LRU过期机制,解决GC引起的性能损耗,性能提升3-5倍 • 分区优化:支持多种分区策略(RANGE/HASH/MOD),解决数据倾斜导致的流量热点瓶颈问题,性能提升2-5倍 • 存储优化:自定义存储方式(B0 码力 | 36 页 | 16.69 MB | 1 年前3
 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入Word2Vec 03 Word2Vec 04 GloVe 02 词嵌入 05 GPT 01 词汇表征和文本数据处理 15 3.Word2Vec 语言模型的训练机制就是这样 1.我们获得了大量文本数据(例如,所 有维基百科文章)。然后 2.我们有一个窗口(比如说三个单词) ,我们会对所有文本进行滑动。 3.滑动窗口为我们的模型生成训练样本 16 3 中,考虑到主导序列转导模型基于编码器-解码器配置中的复杂递归或卷积 神经网络,性能最好的模型被证明还是通过注意力机制(attention mechanism)连接编码器和解码器,因而《Attention Is All You Need》 中提出了一种新的简单架构——Transformer,它完全基于注意力机制, 完全不用重复和卷积,因而这些模型在质量上更优,同时更易于并行化,并 且需要的训练时间明显更少。 生成对抗方式,即通过GAN实现目标属性和 文本量性完全由不同的编码控制的状态。 对话式文本生成适用于智能客服等任务型和闲聊型机器人等 非任务型人机交互场景,可分类为管道模式及端对端模式。 结构性的文本生成,首先通过注意力机制、多层感知器等系 统进行语句内容预选,对数值、时间等类型数据进行推理。 增强数据间的结构信息。其次通过Transformer等模式结合 上下文进行推导,生成最终文本。 ◼ Transform0 码力 | 44 页 | 2.36 MB | 1 年前3 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入Word2Vec 03 Word2Vec 04 GloVe 02 词嵌入 05 GPT 01 词汇表征和文本数据处理 15 3.Word2Vec 语言模型的训练机制就是这样 1.我们获得了大量文本数据(例如,所 有维基百科文章)。然后 2.我们有一个窗口(比如说三个单词) ,我们会对所有文本进行滑动。 3.滑动窗口为我们的模型生成训练样本 16 3 中,考虑到主导序列转导模型基于编码器-解码器配置中的复杂递归或卷积 神经网络,性能最好的模型被证明还是通过注意力机制(attention mechanism)连接编码器和解码器,因而《Attention Is All You Need》 中提出了一种新的简单架构——Transformer,它完全基于注意力机制, 完全不用重复和卷积,因而这些模型在质量上更优,同时更易于并行化,并 且需要的训练时间明显更少。 生成对抗方式,即通过GAN实现目标属性和 文本量性完全由不同的编码控制的状态。 对话式文本生成适用于智能客服等任务型和闲聊型机器人等 非任务型人机交互场景,可分类为管道模式及端对端模式。 结构性的文本生成,首先通过注意力机制、多层感知器等系 统进行语句内容预选,对数值、时间等类型数据进行推理。 增强数据间的结构信息。其次通过Transformer等模式结合 上下文进行推导,生成最终文本。 ◼ Transform0 码力 | 44 页 | 2.36 MB | 1 年前3
 超大规模深度学习在美团的应用-余建平数据并行计算,加速Optimizer计算 • 低频特征过滤  Counting Bloom Filter  概率方式 • 模型数据通路  Base + Delta方式  增量提供ACK机制,确保模型正确性 Parameter Server • 模型数据的统一管理  模型结构  模型参数 PS的参数放置策略 • Ps分布式分片的均衡,避免分片大小不一致  NN网络矩阵按行切分,解决请求包不均衡问题 PS快速failover  Compaction机制,降低load数据量 • Online Learning对数据流的要求  不重不丢:重复的数据会使模型有偏,数据的缺失 会使模型丢失重要信息  数据有序性:数据乱序会导致样本穿越的现象 • Log Join框架  双流拼接框架,通过组合方式支持多流拼接  基于Event Time的Window机制拼接方式  基于Low Watermark解决流乱序、流延迟等流式常 Watermark解决流乱序、流延迟等流式常 见问题 流式拼接框架 • Low Watermark机制  定义了流式数据的时钟,不可逆性  Smooth low watermark:异常数据时间跳变 流式拼接 • Checkpoint解决不重不丢问题  外存解决大数据量性能问题  在引擎中流转log key,特征数据在外存 • 分业务场景支持  轻量级predictor:仅支0 码力 | 41 页 | 5.96 MB | 1 年前3 超大规模深度学习在美团的应用-余建平数据并行计算,加速Optimizer计算 • 低频特征过滤  Counting Bloom Filter  概率方式 • 模型数据通路  Base + Delta方式  增量提供ACK机制,确保模型正确性 Parameter Server • 模型数据的统一管理  模型结构  模型参数 PS的参数放置策略 • Ps分布式分片的均衡,避免分片大小不一致  NN网络矩阵按行切分,解决请求包不均衡问题 PS快速failover  Compaction机制,降低load数据量 • Online Learning对数据流的要求  不重不丢:重复的数据会使模型有偏,数据的缺失 会使模型丢失重要信息  数据有序性:数据乱序会导致样本穿越的现象 • Log Join框架  双流拼接框架,通过组合方式支持多流拼接  基于Event Time的Window机制拼接方式  基于Low Watermark解决流乱序、流延迟等流式常 Watermark解决流乱序、流延迟等流式常 见问题 流式拼接框架 • Low Watermark机制  定义了流式数据的时钟,不可逆性  Smooth low watermark:异常数据时间跳变 流式拼接 • Checkpoint解决不重不丢问题  外存解决大数据量性能问题  在引擎中流转log key,特征数据在外存 • 分业务场景支持  轻量级predictor:仅支0 码力 | 41 页 | 5.96 MB | 1 年前3
 Qcon北京2018-《文本智能处理的深度学习技术》-陈运文输入的原文经过编码器编码变成向量 l 解码器从向量里面提取关键信息,组合成生成式摘要 深度学习内部注意力机制的引入 l 内部注意力机制在解码器里面做 l 关注已生成词,解决长序列摘要生成时,个别字词重复出现的问题 Bi_LSTM Bi_LSTM Bi_LSTM RNN RNN 解码器内部注意力机制 输入序列 输入序列 输入序列。。。 编码器 解码器 摘要序列。。。 摘要序列 Rouge指标优化 给与反馈来更新模型。最终训练得到表现最好的模型。 生成式摘要 Bi_LSTM Bi_LSTM Bi_LSTM RNN RNN Rouge指标优化 Reward 文本摘要候选集 生成 解码器内部注意力机制 编码器 解码器 深度学习摘要生成式模型 输入序列 输入序列 输入序列。。。 摘要序列。。。 摘要序列 更新模型 评分 返回 增强学习优化模块 最优摘要结果 生成式摘要 知识图谱关系抽取:联合学习方法0 码力 | 46 页 | 25.61 MB | 1 年前3 Qcon北京2018-《文本智能处理的深度学习技术》-陈运文输入的原文经过编码器编码变成向量 l 解码器从向量里面提取关键信息,组合成生成式摘要 深度学习内部注意力机制的引入 l 内部注意力机制在解码器里面做 l 关注已生成词,解决长序列摘要生成时,个别字词重复出现的问题 Bi_LSTM Bi_LSTM Bi_LSTM RNN RNN 解码器内部注意力机制 输入序列 输入序列 输入序列。。。 编码器 解码器 摘要序列。。。 摘要序列 Rouge指标优化 给与反馈来更新模型。最终训练得到表现最好的模型。 生成式摘要 Bi_LSTM Bi_LSTM Bi_LSTM RNN RNN Rouge指标优化 Reward 文本摘要候选集 生成 解码器内部注意力机制 编码器 解码器 深度学习摘要生成式模型 输入序列 输入序列 输入序列。。。 摘要序列。。。 摘要序列 更新模型 评分 返回 增强学习优化模块 最优摘要结果 生成式摘要 知识图谱关系抽取:联合学习方法0 码力 | 46 页 | 25.61 MB | 1 年前3
 Keras: 基于 Python 的深度学习库实现这个目标的一种方法是建立一个模型,将两条推文编码成两个向量,连接向量,然后 添加逻辑回归层;这将输出两条推文来自同一作者的概率。模型将接收一对对正负表示的推特 数据。 由于这个问题是对称的,编码第一条推文的机制应该被完全重用来编码第二条推文。这里 我们使用一个共享的 LSTM 层来编码推文。 让我们使用函数式 API 来构建它。首先我们将一条推特转换为一个尺寸为 (140, 256) 的 矩阵,即每条推特 by_name=True) 3.3.6.4 处理已保存模型中的自定义层(或其他自定义对象) 如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将 它们传递给加载机制: from keras.models import load_model # 假设你的模型包含一个 AttentionLayer 类的实例 model = load_model('my_model custom_objects={'AttentionLayer': AttentionLayer}) 3.3.7 为什么训练误差比测试误差高很多? Keras 模型有两种模式:训练和测试。正则化机制,如 Dropout 和 L1/L2 权重正则化,在测 试时是关闭的。 此外,训练误差是每批训练数据的平均误差。由于你的模型是随着时间而变化的,一个 epoch 中的第一批数据的误差通常比最后0 码力 | 257 页 | 1.19 MB | 1 年前3 Keras: 基于 Python 的深度学习库实现这个目标的一种方法是建立一个模型,将两条推文编码成两个向量,连接向量,然后 添加逻辑回归层;这将输出两条推文来自同一作者的概率。模型将接收一对对正负表示的推特 数据。 由于这个问题是对称的,编码第一条推文的机制应该被完全重用来编码第二条推文。这里 我们使用一个共享的 LSTM 层来编码推文。 让我们使用函数式 API 来构建它。首先我们将一条推特转换为一个尺寸为 (140, 256) 的 矩阵,即每条推特 by_name=True) 3.3.6.4 处理已保存模型中的自定义层(或其他自定义对象) 如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将 它们传递给加载机制: from keras.models import load_model # 假设你的模型包含一个 AttentionLayer 类的实例 model = load_model('my_model custom_objects={'AttentionLayer': AttentionLayer}) 3.3.7 为什么训练误差比测试误差高很多? Keras 模型有两种模式:训练和测试。正则化机制,如 Dropout 和 L1/L2 权重正则化,在测 试时是关闭的。 此外,训练误差是每批训练数据的平均误差。由于你的模型是随着时间而变化的,一个 epoch 中的第一批数据的误差通常比最后0 码力 | 257 页 | 1.19 MB | 1 年前3
 华为云深度学习在文本分类中的实践-李明磊2003  神经网络NLP里程碑: Word2vec 2013 CNN RNN 2014左右 Attention 2014 Elmo, Bert 2018 解决维度灾难 预训练+微调 注意力机制 端到端训练 符号-向量 8 预训练+微调 大规模语料训练通 用语言模型 在目标语料上微调 语言模型 在目标语料上训练 分类器 … … BERT E[ C E1 T1 E20 码力 | 23 页 | 1.80 MB | 1 年前3 华为云深度学习在文本分类中的实践-李明磊2003  神经网络NLP里程碑: Word2vec 2013 CNN RNN 2014左右 Attention 2014 Elmo, Bert 2018 解决维度灾难 预训练+微调 注意力机制 端到端训练 符号-向量 8 预训练+微调 大规模语料训练通 用语言模型 在目标语料上微调 语言模型 在目标语料上训练 分类器 … … BERT E[ C E1 T1 E20 码力 | 23 页 | 1.80 MB | 1 年前3
 《TensorFlow 快速入门与实战》5-实战TensorFlow手写体数字识别感知机模型 1957年,受 Warren McCulloch 和 Walter Pitts 在神经元建模方面工作的启发,心理学家 Frank Rosenblatt 参考大脑中神经元信息传递信号的工作机制,发明了神经感知机模型 Perceptron 。 二分类模型 神经网络 在机器学习和认知科学领域,人工神经网络(ANN),简称神经网络(NN)是一种模仿生物 神经网络(动物的中枢神经系统,特0 码力 | 38 页 | 1.82 MB | 1 年前3 《TensorFlow 快速入门与实战》5-实战TensorFlow手写体数字识别感知机模型 1957年,受 Warren McCulloch 和 Walter Pitts 在神经元建模方面工作的启发,心理学家 Frank Rosenblatt 参考大脑中神经元信息传递信号的工作机制,发明了神经感知机模型 Perceptron 。 二分类模型 神经网络 在机器学习和认知科学领域,人工神经网络(ANN),简称神经网络(NN)是一种模仿生物 神经网络(动物的中枢神经系统,特0 码力 | 38 页 | 1.82 MB | 1 年前3
共 14 条
- 1
- 2













